In vitro transcribed sgRNA causes cell death by inducing interferon release

Wei Mu , Na Tang , Chen Cheng , Wen Sun , Xiaofei Wei , Haoyi Wang

Protein Cell ›› 2019, Vol. 10 ›› Issue (6) : 461 -465.

PDF (702KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (6) : 461 -465. DOI: 10.1007/s13238-018-0605-9
LETTER
LETTER

In vitro transcribed sgRNA causes cell death by inducing interferon release

Author information +
History +
PDF (702KB)

Cite this article

Download citation ▾
Wei Mu, Na Tang, Chen Cheng, Wen Sun, Xiaofei Wei, Haoyi Wang. In vitro transcribed sgRNA causes cell death by inducing interferon release. Protein Cell, 2019, 10(6): 461-465 DOI:10.1007/s13238-018-0605-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H (2016) Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Res 26:254–257

[2]

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

[3]

Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S (2016) CRISPR/Cas9 beta-globin gene targeting in human hematopoietic stem cells. Nature 539:384–389

[4]

Dong-Ho K, Longo M, Young H, Lundberg P, Cantin E, Rossi JJ (2004) Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol 22:321

[5]

Gundry MC, Brunetti L, Lin A, Mayle AE, Kitano A, Wagner D, Hsu JI, Hoegenauer KA, Rooney C, Goodell MA (2016) Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep 17:1453–1461

[6]

Hendel A, BakR O, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33:985

[7]

Kim S, Kim D, Cho SW, Kim J, Kim J-S (2014) Highly efficient RNAguided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019

[8]

Kim S, Koo T, Jee H-G, Cho H-Y, Lee G, Lim D-G, Shin HS, Kim J-S (2018) CRISPR RNAs trigger innate immune responses in human cells. Genome Res 28:367–373

[9]

Liu X, Zhang Y, Cheng C, Cheng AW, Zhang X, Li N, Xia C, Wei X, Liu X, Wang H (2016) CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res 27:154

[10]

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

[11]

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

[12]

Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017) A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8:17002–17011

[13]

Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, Haliburton GE, Ye CJ, Bluestone JA, Doudna JA (2015) Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci USA 112:10437–10442

[14]

Shechner DM, Hacisuleyman E, Younger ST, Rinn JL (2015) Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods 12:664–670

[15]

Zhang Y, Mu W, Wang H (2017) Gene editing in T cell therapy. J Genet Genomics 44:415–422

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (702KB)

Supplementary files

PAC-0461-18486-WHY_suppl_1

690

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/