In vitro transcribed sgRNA causes cell death by inducing interferon release

Wei Mu, Na Tang, Chen Cheng, Wen Sun, Xiaofei Wei, Haoyi Wang

PDF(702 KB)
PDF(702 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (6) : 461-465. DOI: 10.1007/s13238-018-0605-9
LETTER
LETTER

In vitro transcribed sgRNA causes cell death by inducing interferon release

Author information +
History +

Cite this article

Download citation ▾
Wei Mu, Na Tang, Chen Cheng, Wen Sun, Xiaofei Wei, Haoyi Wang. In vitro transcribed sgRNA causes cell death by inducing interferon release. Protein Cell, 2019, 10(6): 461‒465 https://doi.org/10.1007/s13238-018-0605-9

References

[1]
Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H (2016) Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Res 26:254–257
CrossRef Google scholar
[2]
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823
CrossRef Google scholar
[3]
Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S (2016) CRISPR/Cas9 beta-globin gene targeting in human hematopoietic stem cells. Nature 539:384–389
CrossRef Google scholar
[4]
Dong-Ho K, Longo M, Young H, Lundberg P, Cantin E, Rossi JJ (2004) Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol 22:321
CrossRef Google scholar
[5]
Gundry MC, Brunetti L, Lin A, Mayle AE, Kitano A, Wagner D, Hsu JI, Hoegenauer KA, Rooney C, Goodell MA (2016) Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep 17:1453–1461
CrossRef Google scholar
[6]
Hendel A, BakR O, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33:985
CrossRef Google scholar
[7]
Kim S, Kim D, Cho SW, Kim J, Kim J-S (2014) Highly efficient RNAguided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019
CrossRef Google scholar
[8]
Kim S, Koo T, Jee H-G, Cho H-Y, Lee G, Lim D-G, Shin HS, Kim J-S (2018) CRISPR RNAs trigger innate immune responses in human cells. Genome Res 28:367–373
CrossRef Google scholar
[9]
Liu X, Zhang Y, Cheng C, Cheng AW, Zhang X, Li N, Xia C, Wei X, Liu X, Wang H (2016) CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res 27:154
CrossRef Google scholar
[10]
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826
CrossRef Google scholar
[11]
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308
CrossRef Google scholar
[12]
Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017) A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8:17002–17011
CrossRef Google scholar
[13]
Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, Haliburton GE, Ye CJ, Bluestone JA, Doudna JA (2015) Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci USA 112:10437–10442
CrossRef Google scholar
[14]
Shechner DM, Hacisuleyman E, Younger ST, Rinn JL (2015) Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods 12:664–670
CrossRef Google scholar
[15]
Zhang Y, Mu W, Wang H (2017) Gene editing in T cell therapy. J Genet Genomics 44:415–422
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 The Author(s)
AI Summary AI Mindmap
PDF(702 KB)

Accesses

Citations

Detail

Sections
Recommended

/