Extended pluripotent stem cells facilitate mouse model generation

Guanghai Xiang, Haoyi Wang

PDF(322 KB)
PDF(322 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (1) : 5-7. DOI: 10.1007/s13238-018-0573-0
HIGHLIGHT
HIGHLIGHT

Extended pluripotent stem cells facilitate mouse model generation

Author information +
History +

Cite this article

Download citation ▾
Guanghai Xiang, Haoyi Wang. Extended pluripotent stem cells facilitate mouse model generation. Protein Cell, 2019, 10(1): 5‒7 https://doi.org/10.1007/s13238-018-0573-0

References

[1]
Beddington RS, Robertson EJ (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105:733–737
[2]
Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, de Sousa Chuva, Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195
CrossRef Google scholar
[3]
Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12:432–438
CrossRef Google scholar
[4]
Chan YS, Goke J, Ng JH, Lu X, Gonzales KA, Tan CP, Tng WQ, Hong ZZ, Lim YS, Ng HH (2013) Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13:663–675
CrossRef Google scholar
[5]
Du Y, Wang T, Xu J, Zhao C, Li H, Fu Y, Xu Y, Xie L, Zhao J, Yang W (2018) Efficient derivation of extended pluripotent stem cells from NOD-scid Il2rg(−/−) mice. Protein Cell.https://doi.org/10.1007/s13238-018-0558-z
CrossRef Google scholar
[6]
Duggal G, Warrier S, Ghimire S, Broekaert D, Van der Jeught M, Lierman S, Deroo T, Peelman L, Van Soom A, Cornelissen R (2015) Alternative routes to induce naive pluripotency in human embryonic stem cells. Stem Cells 33:2686–2698
CrossRef Google scholar
[7]
Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156
CrossRef Google scholar
[8]
Forsyth NR, Wright WE, Shay JW (2002) Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 69:188–197
CrossRef Google scholar
[9]
Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A(2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282–286
CrossRef Google scholar
[10]
Jaenisch R, Dubois N, Rasko JE, Deng H, Alvarado AS, Fuchs E, Novakovic GV, Baldwin K (2018) Challenging stem cells. Cell 173:1063–1065
CrossRef Google scholar
[11]
James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282
CrossRef Google scholar
[12]
Li H, Zhao C, Xu J, Xu Y, Cheng C, Liu Y, Wang T, Du Y, Xie L, Zhao J(2018) Rapid generation of gene-targeted EPS-derived mouse models through tetraploid complementation. Protein Cell.https://doi.org/10.1007/s13238-018-0556-1
CrossRef Google scholar
[13]
Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638
CrossRef Google scholar
[14]
Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428
CrossRef Google scholar
[15]
Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492
CrossRef Google scholar
[16]
Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158:1254–1269
CrossRef Google scholar
[17]
Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199
CrossRef Google scholar
[18]
Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA, Reddy J, Fan ZP, Maetzel D, Ganz K, Shi L (2014) systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:524–526
CrossRef Google scholar
[19]
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147
CrossRef Google scholar
[20]
Valamehr B, Robinson M, Abujarour R, Rezner B, Vranceanu F, Le T,Medcalf A, Lee TT, Fitch M, Robbins D(2014) Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Rep 2:366–381
CrossRef Google scholar
[21]
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918
CrossRef Google scholar
[22]
Ware CB, Nelson AM, Mecham B, Hesson J, Zhou W, Jonlin EC, Jimenez-Caliani AJ, Deng X, Cavanaugh C, Cook S (2014) Derivation of naive human embryonic stem cells. Proc Natl Acad Sci USA 111:4484–4489
CrossRef Google scholar
[23]
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379
CrossRef Google scholar
[24]
Yang J, Ryan DJ, Wang W, Tsang JC, Lan G, Masaki H, Gao X, Antunes L, Yu Y, Zhu Z (2017a) Establishment of mouse expanded potential stem cells. Nature 550:393–397
CrossRef Google scholar
[25]
Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, Xu Y, Dong J, Wang C, Lai W (2017b) Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169(243–257):e225

RIGHTS & PERMISSIONS

2018 The Author(s) 2018. This article is an open access publication
AI Summary AI Mindmap
PDF(322 KB)

Accesses

Citations

Detail

Sections
Recommended

/