Effective and precise adenine base editing in mouse zygotes

Puping Liang, Hongwei Sun, Xiya Zhang, Xiaowei Xie, Jinran Zhang, Yaofu Bai, Xueling Ouyang, Shengyao Zhi, Yuanyan Xiong, Wenbin Ma, Dan Liu, Junjiu Huang, Zhou Songyang

PDF(1419 KB)
PDF(1419 KB)
Protein Cell ›› 2018, Vol. 9 ›› Issue (9) : 808-813. DOI: 10.1007/s13238-018-0566-z
LETTER
LETTER

Effective and precise adenine base editing in mouse zygotes

Author information +
History +

Cite this article

Download citation ▾
Puping Liang, Hongwei Sun, Xiya Zhang, Xiaowei Xie, Jinran Zhang, Yaofu Bai, Xueling Ouyang, Shengyao Zhi, Yuanyan Xiong, Wenbin Ma, Dan Liu, Junjiu Huang, Zhou Songyang. Effective and precise adenine base editing in mouse zygotes. Protein Cell, 2018, 9(9): 808‒813 https://doi.org/10.1007/s13238-018-0566-z

References

[1]
Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, Case LE, Clemens PR, Hadjiyannakis S, Pandya S (2018) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 17(3):251–267
CrossRef Google scholar
[2]
Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17:419–437
CrossRef Google scholar
[3]
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551:464–471
CrossRef Google scholar
[4]
Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63
CrossRef Google scholar
[5]
Kim D, Kim S, Kim S, Park J, Kim JS (2016) Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res 26:406–415
CrossRef Google scholar
[6]
Kim K, Ryu SM, Kim ST, Baek G, Kim D, Lim K, Chung E, Kim S, Kim JS (2017a) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35:435–437
CrossRef Google scholar
[7]
Kim D, Lim K, Kim ST, Yoon SH, Kim K, Ryu SM, Kim JS (2017b) Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol 35:475–480
CrossRef Google scholar
[8]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424
CrossRef Google scholar
[9]
Komor AC, Badran AH, Liu DR (2017) CRISPR-Based technologies for the manipulation of eukaryotic genomes. Cell 169:559
CrossRef Google scholar
[10]
Liang P, Zhang X, Chen Y, Huang J (2017a) Developmental history and application of CRISPR in human disease. J Gene Med. https://doi.org/10.1002/jgm.296
CrossRef Google scholar
[11]
Liang P, Sun H, Sun Y, Zhang X, Xie X, Zhang J, Zhang Z, Chen Y, Ding C, Xiong Y (2017b) Effective gene editing by highfidelity base editor 2 in mouse zygotes. Protein Cell 8:601–611
CrossRef Google scholar
[12]
Liang P, Ding C, Sun H, Xie X, Xu Y, Zhang X, Sun Y, Xiong Y, Ma W, Liu Y (2017c) Correction of beta-thalassemia mutant by base editor in human embryos. Protein Cell 8:811–822
CrossRef Google scholar
[13]
Liu Z, Lu Z, Yang G, Huang S, Li G, Feng S, Liu Y, Li J, Yu W, Zhang Y (2018) Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun 9:2338
CrossRef Google scholar
[14]
Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, Kim HS, Kim D, Lee H, Chung E (2018) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 36:536–539
CrossRef Google scholar
[15]
Zhang X, Liang P, Ding C, Zhang Z, Zhou J, Xie X, Huang R, Sun Y, Sun H, Zhang J (2016) Efficient production of gene-modified mice using Staphylococcus aureus Cas9. Sci Rep 6:32565
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 The Author(s)
AI Summary AI Mindmap
PDF(1419 KB)

Accesses

Citations

Detail

Sections
Recommended

/