Discovery of the first macrolide antibiotic binding protein in Mycobacterium tuberculosis: a new antibiotic resistance drug target
Qingqing Zhang, Huijuan Liu, Xiang Liu, Dunquan Jiang, Bingjie Zhang, Hongliang Tian, Cheng Yang, Luke W. Guddat, Haitao Yang, Kaixia Mi, Zihe Rao
Discovery of the first macrolide antibiotic binding protein in Mycobacterium tuberculosis: a new antibiotic resistance drug target
[1] |
Alekshun, M.N., and Levy, S.B. (2007). Molecular mechanisms of antibacterial multidrug resistance. Cell 128, 1037–1050.
CrossRef
Google scholar
|
[2] |
Alimuddin Zumla, Andrew George, Virendra Sharma, Nick Herbert, and Masham, B. (2013). WHO’s 2013 global report on tuberculosis: successes, threats, and opportunities. Lancet 382, 1765–1767.
CrossRef
Google scholar
|
[3] |
Black, P.A., Warren, R.M., Louw, G.E., van Helden, P.D., Victor, T.C., and Kana, B.D. (2014). Energy metabolism and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58, 2491–2503.
CrossRef
Google scholar
|
[4] |
Blair, J.M., Webber, M.A., Baylay, A.J., Ogbolu, D.O., and Piddock, L.J. (2015). Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13, 42–51.
CrossRef
Google scholar
|
[5] |
Buriankova, K., Doucet-Populaire, F., Dorson, O., Gondran, A., Ghnassia, J.C., Weiser, J., and Pernodet, J.L. (2003). Molecular Basis of Intrinsic Macrolide Resistance in the Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother 48, 143–150.
CrossRef
Google scholar
|
[6] |
Chen, S., Huai, P., Wang, X., Zhong, J., Wang, X., Wang, K., Wang, L., Jiang, S., Li, J., Peng, Y.,
CrossRef
Google scholar
|
[7] |
Dassa, E., and Bouige, P. (2001). The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152, 211–229.
CrossRef
Google scholar
|
[8] |
Dong, Y., Qiu, X., Shaw, N., Xu, Y., Sun, Y., Li, X., Li, J., and Rao, Z. (2015). Molecular basis for the inhibition of beta-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosisby flavonoid inhibitors. Protein Cell 6, 504–517.
CrossRef
Google scholar
|
[9] |
Günther, G. (2014). Multidrug-resistant and extensively drug-resistant tuberculosis: a review of current concepts and future challenges. Clin Med 14, 279–285.
CrossRef
Google scholar
|
[10] |
Kerr, I. D., Reynolds, E.D., and Cove, J.H. (2005). ABC proteins and antibiotic drug resistance: is it all about transport? Biochem Soc 33, 1000–1002.
CrossRef
Google scholar
|
[11] |
Lin, D.Y., Huang, S., and Chen, J. (2015). Crystal structures of a polypeptide processing and secretion transporter. Nature 523, 425–430.
CrossRef
Google scholar
|
[12] |
Nunez-Samudio, V., and Chesneau, O. (2013). Functional interplay between the ATP binding cassette Msr(D) protein and the membrane facilitator superfamily Mef(E) transporter for macrolide resistance in Escherichia coli. Res Microbiol 164, 226–235.
CrossRef
Google scholar
|
[13] |
Shim, T.S., and Jo, K.-W. (2013). Medical treatment of pulmonary multidrug-resistant tuberculosis. Infect Chemother 45, 367–374.
CrossRef
Google scholar
|
[14] |
Sharkey, L.K., Edwards, T.A., and O’Neill, A.J. (2016). ABC-F proteins mediate antibiotic resistance through ribosomal protection. MBio 7, e01975.
CrossRef
Google scholar
|
[15] |
WHO (2014). Global tuberculosis report 2014 (Geneva, World Health Organization).
|
/
〈 | 〉 |