Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems

Xin Zhang, Wei Wang, Lin Shan, Le Han, Shufeng Ma, Yan Zhang, Bingtao Hao, Ying Lin, Zhili Rong

PDF(520 KB)
PDF(520 KB)
Protein Cell ›› 2018, Vol. 9 ›› Issue (4) : 380-383. DOI: 10.1007/s13238-017-0491-6
LETTER
LETTER

Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems

Author information +
History +

Cite this article

Download citation ▾
Xin Zhang, Wei Wang, Lin Shan, Le Han, Shufeng Ma, Yan Zhang, Bingtao Hao, Ying Lin, Zhili Rong. Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems. Protein Cell, 2018, 9(4): 380‒383 https://doi.org/10.1007/s13238-017-0491-6

References

[1]
Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941
CrossRef Google scholar
[2]
Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D (2013) Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol 20:1040–1046
CrossRef Google scholar
[3]
Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521
CrossRef Google scholar
[4]
Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW (2017) Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol 35:789–792
CrossRef Google scholar
[5]
Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517
CrossRef Google scholar
[6]
Kim Y, Cheong SA, Lee JG, Lee SW, Lee MS (2016) Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34:808–810
CrossRef Google scholar
[7]
Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283
CrossRef Google scholar
[8]
Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646
CrossRef Google scholar
[9]
Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018
CrossRef Google scholar
[10]
Ye H, Rong Z, Lin Y (2017) Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein Cell 8(11):853–855
CrossRef Google scholar
[11]
Zaidi SS, Mahfouz MM, Mansoor S (2017) CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22:550–553
CrossRef Google scholar
[12]
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771
CrossRef Google scholar
[13]
Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J(2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35:31–34
CrossRef Google scholar
[14]
Zhang Y, Long C, Li H, McAnally JR, Baskin KK (2017) CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 3:e1602814
CrossRef Google scholar
[15]
Zhu X, Xu Y, Yu S, Lu L, Ding M (2014) An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci Rep 4:6420
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is an open access publication
AI Summary AI Mindmap
PDF(520 KB)

Accesses

Citations

Detail

Sections
Recommended

/