Establishment and function of tissue-resident innate lymphoid cells in the skin
Jie Yang, Luming Zhao, Ming Xu, Na Xiong
Establishment and function of tissue-resident innate lymphoid cells in the skin
Innate lymphoid cells (ILCs) are a newly classified family of immune cells of the lymphoid lineage. While they could be found in both lymphoid organs and non-lymphoid tissues, ILCs are preferentially enriched in barrier tissues such as the skin, intestine, and lung where they could play important roles in maintenance of tissue integrity and function and protection against assaults of foreign agents. On the other hand, dysregulated activation of ILCs could contribute to tissue inflammatory diseases. In spite of recent progress towards understanding roles of ILCs in the health and disease, mechanisms regulating specific establishment, activation, and function of ILCs in barrier tissues are still poorly understood. We herein review the up-to-date understanding of tissue-specific relevance of ILCs. Particularly we will focus on resident ILCs of the skin, the outmost barrier tissue critical in protection against various foreign hazardous agents and maintenance of thermal and water balance. In addition, we will discuss remaining outstanding questions yet to be addressed.
innate lymphoid cells / skin / migration / chemokine receptor / homeostasis / inflammation
[1] |
AlmeidaFF, TennoM, BrzostekJ, LiJL, AlliesG, HoeffelG, SeeP, NgLG, FehlingHJ, GascoigneNR
CrossRef
Google scholar
|
[2] |
ArtisD, SpitsH (2015) The biology of innate lymphoid cells. Nature517:293–301
CrossRef
Google scholar
|
[3] |
AustrupF, VestweberD, BorgesE, LohningM, BrauerR, HerzU, RenzH, HallmannR, ScheffoldA, RadbruchA, HamannA (1997) P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflammed tissues. Nature385:81–83
CrossRef
Google scholar
|
[4] |
BarnigC, CernadasM, DutileS, LiuX, PerrellaMA, KazaniS, WechslerME, IsraelE, LevyBD (2013) Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci Transl Med5:174ra126
CrossRef
Google scholar
|
[5] |
BartemesKR, KephartGM, FoxSJ, KitaH (2014) Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol134(671–678):e674
CrossRef
Google scholar
|
[6] |
BatistaMD, HoEL, KueblerPJ, MilushJM, LanierLL, KallasEG, YorkVA, ChangD, LiaoW, UnemoriP
CrossRef
Google scholar
|
[7] |
BerninkJH, PetersCP, MunnekeM, te VeldeAA, MeijerSL, WeijerK, HreggvidsdottirHS, HeinsbroekSE, LegrandN, BuskensCJ
CrossRef
Google scholar
|
[8] |
BerninkJH, KrabbendamL, GermarK, de JongE, GronkeK, Kofoed-NielsenM, MunnekeJM, HazenbergMD, VillaudyJ, BuskensCJ
CrossRef
Google scholar
|
[9] |
BironCA, NguyenKB, PienGC, CousensLP, Salazar-MatherTP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol17:189–220
CrossRef
Google scholar
|
[10] |
BuonocoreS, AhernPP, UhligHH, IvanovII, LittmanDR, MaloyKJ, PowrieF (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature464:1371–1375
CrossRef
Google scholar
|
[11] |
CampbellDJ, ButcherEC (2002) Rapid acquisition of tissue-specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med195:135–141
CrossRef
Google scholar
|
[12] |
CampbellJJ, HaraldsenG, PanJ, RottmanJ, QinS, PonathP, AndrewDP, WarnkeR, RuffingN, KassamN
CrossRef
Google scholar
|
[13] |
CellaM, OteroK, ColonnaM (2010) Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc Natl Acad Sci USA107:10961–10966
CrossRef
Google scholar
|
[14] |
ChangYJ, KimHY, AlbackerLA, BaumgarthN, McKenzieAN, SmithDE, DekruyffRH, UmetsuDT (2011) Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol12:631–638
CrossRef
Google scholar
|
[15] |
ConstantinidesMG, McDonaldBD, VerhoefPA, BendelacA (2014) A committed precursor to innate lymphoid cells. Nature508:397–401
CrossRef
Google scholar
|
[16] |
DadiS, ChhangawalaS, WhitlockBM, FranklinRA, LuoCT, OhSA, ToureA, PritykinY, HuseM, LeslieCS, LiMO (2016) Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell164:365–377
CrossRef
Google scholar
|
[17] |
DaussyC, FaureF, MayolK, VielS, GasteigerG, CharrierE, BienvenuJ, HenryT, DebienE, HasanUA
CrossRef
Google scholar
|
[18] |
De TogniP, GoellnerJ, RuddleNH, StreeterPR, FickA, MariathasanS, SmithSC, CarlsonR, ShornickLP, Strauss-SchoenbergerJ
CrossRef
Google scholar
|
[19] |
DohertyTA, KhorramN, LundS, MehtaAK, CroftM, BroideDH (2013) Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol132:205–213
CrossRef
Google scholar
|
[20] |
DrakeLY, IijimaK, KitaH (2014) Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy69:1300–1307
CrossRef
Google scholar
|
[21] |
DudakovJA, HanashAM, JenqRR, YoungLF, GhoshA, SingerNV, WestML, SmithOM, HollandAM, TsaiJJ
CrossRef
Google scholar
|
[22] |
Dyring-AndersenB, GeislerC, AgerbeckC, LauritsenJP, GudjonsdottirSD, SkovL, BonefeldCM (2014) Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin. Br J Dermatol170:609–616
CrossRef
Google scholar
|
[23] |
EberlG, MarmonS, SunshineMJ, RennertPD, ChoiY, LittmanDR (2004) An essential function for the nuclear receptor RORγ(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol5:64–73
CrossRef
Google scholar
|
[24] |
EbertLM, MeuterS, MoserB (2006) Homing and function of human skin γδ T cells and NK cells: relevance for tumor surveillance. J Immunol176:4331–4336
CrossRef
Google scholar
|
[25] |
FlierJ, BoorsmaDM, van BeekPJ, NieboerC, StoofTJ, WillemzeR, TensenCP (2001) Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J Pathol194:398–405
CrossRef
Google scholar
|
[26] |
FuY, YangJ, XiongN (2016) Cutting edge: skin CCR10+ CD8+ T cells support resident regulatory T cells THROUGH the B7.2/receptor axis to regulate local immune homeostasis and response. J Immunol196:4859–4864
CrossRef
Google scholar
|
[27] |
FuchsA, VermiW, LeeJS, LonardiS, GilfillanS, NewberryRD, CellaM, ColonnaM (2013) Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity38:769–781
CrossRef
Google scholar
|
[28] |
GasteigerG, RudenskyAY (2014) Interactions between innate and adaptive lymphocytes. Nat Rev Immunol14:631–639
CrossRef
Google scholar
|
[29] |
GasteigerG, FanX, DikiyS, LeeSY, RudenskyAY (2015) Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science350:981–985
CrossRef
Google scholar
|
[30] |
GauvreauGM, O’ByrnePM, BouletLP, WangY, CockcroftD, BiglerJ, FitzGeraldJM, BoedigheimerM, DavisBE, DiasC
CrossRef
Google scholar
|
[31] |
GombertM, Dieu-NosjeanMC, WinterbergF, BunemannE, KubitzaRC, Da CunhaL, HaahtelaA, LehtimakiS, MullerA, RiekerJ
CrossRef
Google scholar
|
[32] |
GordonSM, ChaixJ, RuppLJ, WuJ, MaderaS, SunJC, LindstenT, ReinerSL (2012) The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity36:55–67
CrossRef
Google scholar
|
[33] |
GotoY, ObataT, KunisawaJ, SatoS, IvanovII, LamichhaneA, TakeyamaN, KamiokaM, SakamotoM, MatsukiT
CrossRef
Google scholar
|
[34] |
GudjonssonJE, DingJ, JohnstonA, TejasviT, GuzmanAM, NairRP, VoorheesJJ, AbecasisGR, ElderJT (2010) Assessment of the psoriatic transcriptome in a large sample: additional regulated genes and comparisons with in vitro models. J Invest Dermatol130:1829–1840
CrossRef
Google scholar
|
[35] |
GuoX, LiangY, ZhangY, LasorellaA, KeeBL, FuYX (2015) Innate lymphoid cells control early colonization resistance against intestinal pathogens through ID2-dependent regulation of the microbiota. Immunity42:731–743
CrossRef
Google scholar
|
[36] |
Gury-BenAriM, ThaissCA, SerafiniN, WinterDR, GiladiA, Lara-AstiasoD, LevyM, SalameTM, WeinerA, DavidE
CrossRef
Google scholar
|
[37] |
HalimTY, MacLarenA, RomanishMT, GoldMJ, McNagnyKM, TakeiF (2012) Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity37:463–474
CrossRef
Google scholar
|
[38] |
HalimTY, SteerCA, MathaL, GoldMJ, Martinez-GonzalezI, McNagnyKM, McKenzieAN, TakeiF (2014) Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity40:425–435
CrossRef
Google scholar
|
[39] |
HamblyN, NairP (2014) Monoclonal antibodies for the treatment of refractory asthma. Curr Opin Pulm Med20:87–94
CrossRef
Google scholar
|
[40] |
HamsE, LocksleyRM, McKenzieAN, FallonPG (2013) Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J Immunol191:5349–5353
CrossRef
Google scholar
|
[41] |
HamsE, ArmstrongME, BarlowJL, SaundersSP, SchwartzC, CookeG, FahyRJ, CrottyTB, HiraniN, FlynnRJ
CrossRef
Google scholar
|
[42] |
HepworthMR, MonticelliLA, FungTC, ZieglerCG, GrunbergS, SinhaR, MantegazzaAR, MaHL, CrawfordA, AngelosantoJM
CrossRef
Google scholar
|
[43] |
HerbermanRB, NunnME, HoldenHT, LavrinDH (1975a) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer16:230–239
CrossRef
Google scholar
|
[44] |
HerbermanRB, NunnME, LavrinDH (1975b) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer16:216–229
CrossRef
Google scholar
|
[45] |
HomeyB,WangW, SotoH, BuchananME, WiesenbornA, CatronD, MullerA, McClanahanTK, Dieu-NosjeanMC, OrozcoR
CrossRef
Google scholar
|
[46] |
HomeyB, AleniusH, MullerA, SotoH, BowmanEP, YuanW, McEvoyL, LauermaAI, AssmannT, BunemannE
CrossRef
Google scholar
|
[47] |
HoylerT, KloseCS, SouabniA, Turqueti-NevesA, PfeiferD, RawlinsEL, VoehringerD, BusslingerM, DiefenbachA (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity37:634–648
CrossRef
Google scholar
|
[48] |
ImaiY, YasudaK, SakaguchiY, HanedaT, MizutaniH, YoshimotoT, NakanishiK, YamanishiK (2013) Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci USA110:13921–13926
CrossRef
Google scholar
|
[49] |
IshizukaIE, ConstantinidesMG, GudjonsonH, BendelacA (2016) The innate lymphoid cell precursor. Annu Rev Immunol34:299–316
CrossRef
Google scholar
|
[50] |
KandaN, KoikeS, WatanabeS (2005) IL-17 suppresses TNF-alphainduced CCL27 production through induction of COX-2 in human keratinocytes. J Allergy Clin Immunol116:1144–1150
CrossRef
Google scholar
|
[51] |
KanteleA, ZivnyJ, HakkinenM, ElsonCO, MesteckyJ (1999) Differential homing commitments of antigen-specific Tcells after oral or parenteral immunization in humans. J Immunol162:5173–5177
|
[52] |
KarakawaM, KomineM, HanakawaY, TsudaH, SayamaK, TamakiK, OhtsukiM (2014) CCL27 is downregulated by interferon γ via epidermal growth factor receptor in normal human epidermal keratinocytes. J Cell Physiol229(12):1935–1945
CrossRef
Google scholar
|
[53] |
KiesslingR, KleinE, ProssH, WigzellH (1975a) “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol5:117–121
CrossRef
Google scholar
|
[54] |
KiesslingR, KleinE, WigzellH (1975b) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol5:112–117
CrossRef
Google scholar
|
[55] |
KimBS, SiracusaMC, SaenzSA, NotiM, MonticelliLA, SonnenbergGF, HepworthMR, Van VoorheesAS, ComeauMR, ArtisD (2013) TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med5:170ra116
CrossRef
Google scholar
|
[56] |
KimBS, WangK, SiracusaMC, SaenzSA, BrestoffJR, MonticelliLA, NotiM, Tait WojnoED, FungTC, KuboM, ArtisD (2014a) Basophils promote innate lymphoid cell responses in inflamed skin. J Immunol193:3717–3725
CrossRef
Google scholar
|
[57] |
KimHY, LeeHJ, ChangYJ, PichavantM, ShoreSA, FitzgeraldKA, IwakuraY, IsraelE, BolgerK, FaulJ
CrossRef
Google scholar
|
[58] |
KimMH, TaparowskyEJ, KimCH (2015) Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity43:107–119
CrossRef
Google scholar
|
[59] |
KirchbergerS, RoystonDJ, BoulardO, ThorntonE, FranchiniF, SzabadyRL, HarrisonO, PowrieF (2013) Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med210:917–931
CrossRef
Google scholar
|
[60] |
KloseCS, KissEA, SchwierzeckV, EbertK, HoylerT, d’HarguesY, GoppertN, CroxfordAL, WaismanA, TanriverY, DiefenbachA (2013) A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature494:261–265
CrossRef
Google scholar
|
[61] |
KloseCS, FlachM, MohleL, RogellL, HoylerT, EbertK, FabiunkeC, PfeiferD, SexlV, Fonseca-PereiraD
CrossRef
Google scholar
|
[62] |
KruglovAA, GrivennikovSI, KuprashDV, WinsauerC, PrepensS, SeleznikGM, EberlG, LittmanDR, HeikenwalderM, TumanovAV, NedospasovSA (2013) Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis. Science 342:1243–1246
CrossRef
Google scholar
|
[63] |
LeungDY (2013) New insights into atopic dermatitis: role of skin barrier and immune dysregulation. Allergol Int62:151–161
CrossRef
Google scholar
|
[64] |
LiZ, HodgkinsonT, GothardEJ, BoroumandS, LambR, CumminsI, NarangP, SawtellA, ColesJ, LeonovG
CrossRef
Google scholar
|
[65] |
LonsdorfAS, HwangST, EnkAH (2009) Chemokine receptors in T-cell-mediated diseases of the skin. J Invest Dermatol129:2552–2566
CrossRef
Google scholar
|
[66] |
LuciC, ReyndersA, IvanovII, CognetC, ChicheL, ChassonL, HardwigsenJ, AnguianoE, BanchereauJ, ChaussabelD
CrossRef
Google scholar
|
[67] |
MasopustD, SchenkelJM (2013) The integration of T cell migration, differentiation and function. Nat Rev Immunol13:309–320
CrossRef
Google scholar
|
[68] |
McHedlidzeT, WaldnerM, ZopfS, WalkerJ, RankinAL, SchuchmannM, VoehringerD, McKenzieAN, NeurathMF, PflanzS, WirtzS (2013) Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity39:357–371
CrossRef
Google scholar
|
[69] |
McKenzieAN, SpitsH, EberlG (2014) Innate lymphoid cells in inflammation and immunity. Immunity41:366–374
CrossRef
Google scholar
|
[70] |
MebiusRE, RennertP, WeissmanIL (1997) Developing lymph nodes collect CD4+CD3− LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity7:493–504
CrossRef
Google scholar
|
[71] |
MoedH, BoorsmaDM, TensenCP, FlierJ, JonkerMJ, StoofTJ, von BlombergBM, BruynzeelDP, ScheperRJ, RustemeyerT, GibbsS (2004) Increased CCL27-CCR10 expression in allergic contact dermatitis: implications for local skin memory. J Pathol204:39–46
CrossRef
Google scholar
|
[72] |
MoffattMF, GutIG, DemenaisF, StrachanDP, BouzigonE, HeathS, von MutiusE, FarrallM, LathropM, CooksonWO (2010) A largescale, consortium-based genomewide association study of asthma. N Engl J Med363:1211–1221
CrossRef
Google scholar
|
[73] |
MolofskyAB, NussbaumJC,LiangHE, Van DykenSJ, ChengLE, MohapatraA, ChawlaA, LocksleyRM (2013) Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med210:535–549
CrossRef
Google scholar
|
[74] |
MonticelliLA, SonnenbergGF, AbtMC, AlenghatT, ZieglerCG, DoeringTA, AngelosantoJM, LaidlawBJ, YangCY, SathaliyawalaT
CrossRef
Google scholar
|
[75] |
MoraJR, von AndrianUH (2006) T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol27:235–243
CrossRef
Google scholar
|
[76] |
MoraJR, BonoMR, ManjunathN, WeningerW, CavanaghLL, RosemblattM, Von AndrianUH (2003) Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature424:88–93
CrossRef
Google scholar
|
[77] |
MoraJR, ChengG, PicarellaD, BriskinM, BuchananN, von AndrianUH (2005) Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J Exp Med201:303–316
CrossRef
Google scholar
|
[78] |
MoralesJ, HomeyB, VicariAP, HudakS, OldhamE, HedrickJ, OrozcoR, CopelandNG, JenkinsNA, McEvoyLM, ZlotnikA (1999) CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc Natl Acad Sci USA96:14470–14475
CrossRef
Google scholar
|
[79] |
MoroK, KabataH, TanabeM, KogaS, TakenoN, MochizukiM, FukunagaK, AsanoK, BetsuyakuT, KoyasuS (2016) Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat Immunol17:76–86
CrossRef
Google scholar
|
[80] |
MorthaA, ChudnovskiyA, HashimotoD, BogunovicM, SpencerSP, BelkaidY, MeradM (2014) Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science343:1249288
CrossRef
Google scholar
|
[81] |
NeillDR, WongSH, BellosiA, FlynnRJ, DalyM, LangfordTK, BucksC, KaneCM, FallonPG, PannellR
CrossRef
Google scholar
|
[82] |
NussbaumJC, Van DykenSJ, von MoltkeJ, ChengLE, MohapatraA, MolofskyAB, ThorntonEE, KrummelMF, ChawlaA, LiangHE, LocksleyRM (2013) Type 2 innate lymphoid cells control eosinophil homeostasis. Nature502:245–248
CrossRef
Google scholar
|
[83] |
OliphantCJ, HwangYY, WalkerJA, SalimiM, WongSH, BrewerJM, EnglezakisA, BarlowJL, HamsE, ScanlonST
CrossRef
Google scholar
|
[84] |
O’SullivanTE, RappM, FanX, WeizmanOE, BhardwajP, AdamsNM, WalzerT, DannenbergAJ, SunJC (2016) Adipose-resident group 1 Innate lymphoid cells promote obesity-associated insulin resistance. Immunity45:428–441
CrossRef
Google scholar
|
[85] |
PantelyushinS, HaakS, IngoldB, KuligP, HeppnerFL, NavariniAA, BecherB (2012) Rorγt+ innate lymphocytes and γδ Tcells initiate psoriasiform plaque formation in mice. J Clin Invest122:2252–2256
CrossRef
Google scholar
|
[86] |
PengH, JiangX, ChenY, SojkaDK, WeiH, GaoX, SunR, YokoyamaWM, TianZ (2013) Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest123:1444–1456
CrossRef
Google scholar
|
[87] |
PerryJS, HanS, XuQ, HermanML, KennedyLB, CsakoG, BielekovaB (2012) Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci Transl Med4:145ra106
CrossRef
Google scholar
|
[88] |
PickerLJ, TreerJR, Ferguson-DarnellB, CollinsPA, BergstresserPR, TerstappenLW (1993) Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyteassociated antigen, a tissue-selective homing receptor for skinhoming T cells. J Immunol150:1122–1136
|
[89] |
PivarcsiA, GombertM, Dieu-NosjeanMC, LauermaA, KubitzaR, MellerS, RiekerJ, MullerA, Da CunhaL, HaahtelaA
CrossRef
Google scholar
|
[90] |
PowellN, WalkerAW, StolarczykE, CanavanJB, GokmenMR, MarksE, JacksonI, HashimA, CurtisMA, JennerRG
CrossRef
Google scholar
|
[91] |
PriceAE, LiangHE, SullivanBM, ReinhardtRL, EisleyCJ, ErleDJ, LocksleyRM (2010) Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci USA107:11489–11494
CrossRef
Google scholar
|
[92] |
PulendranB, ArtisD (2012) New paradigms in type 2 immunity. Science337:431–435
CrossRef
Google scholar
|
[93] |
QiuJ, GuoX, ChenZM, HeL, SonnenbergGF, ArtisD, FuYX, ZhouL (2013) Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity39:386–399
CrossRef
Google scholar
|
[94] |
QuarantaM, KnappB, GarzorzN, MattiiM, PullabhatlaV, PenninoD, AndresC, Traidl-HoffmannC, CavaniA, TheisFJ
CrossRef
Google scholar
|
[95] |
RakGD, OsborneLC, SiracusaMC, KimBS,WangK, BayatA, ArtisD, VolkSW (2016) IL-33-dependent group 2 innate lymphoid cells promote cutaneouswound healing. J Invest Dermatol136:487–496
CrossRef
Google scholar
|
[96] |
RankinLC, GroomJR, ChopinM, HeroldMJ, WalkerJA, MielkeLA, McKenzieAN, CarottaS, NuttSL, BelzGT (2013) The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat Immunol14:389–395
CrossRef
Google scholar
|
[97] |
ReissY, ProudfootAE, PowerCA, CampbellJJ, ButcherEC (2001) CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med194:1541–1547
CrossRef
Google scholar
|
[98] |
RiisJL, JohansenC, VestergaardC, BechR, KragballeK, IversenL (2011a) Kinetics and differential expression of the skin-related chemokines CCL27 and CCL17 in psoriasis, atopic dermatitis and allergic contact dermatitis. Exp Dermatol20:789–794
CrossRef
Google scholar
|
[99] |
RiisJL, JohansenC, VestergaardC, OtkjaerK, KragballeK, IversenL (2011b) CCL27 expression is regulated by both p38 MAPK and IKKβ signalling pathways. Cytokine56:699–707
CrossRef
Google scholar
|
[100] |
RoedigerB, KyleR, YipKH, SumariaN, GuyTV, KimBS, MitchellAJ, TaySS, JainR, Forbes-BlomE
CrossRef
Google scholar
|
[101] |
RottLS, RoseJR, BassD, WilliamsMB, GreenbergHB, ButcherEC (1997) Expression of mucosal homing receptor alpha4beta7 by circulating CD4+ cells with memory for intestinal rotavirus. J Clin Invest100:1204–1208
CrossRef
Google scholar
|
[102] |
SalimiM, BarlowJL, SaundersSP, XueL, Gutowska-OwsiakD, WangX, HuangLC, JohnsonD, ScanlonST, McKenzieAN
CrossRef
Google scholar
|
[103] |
SawaS, LochnerM, Satoh-TakayamaN, DulauroyS, BerardM, KleinschekM, CuaD, Di
CrossRef
Google scholar
|
[104] |
ScovilleSD, Mundy-BosseBL, ZhangMH, ChenL, ZhangX, KellerKA, HughesT, ChenL, ChengS, BerginSM
CrossRef
Google scholar
|
[105] |
SeilletC, RankinLC, GroomJR, MielkeLA, TellierJ, ChopinM, HuntingtonND, BelzGT, CarottaS (2014) Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med211:1733–1740
CrossRef
Google scholar
|
[106] |
SerafiniN, VosshenrichCA, Di SantoJP (2015) Transcriptional regulation of innate lymphoid cell fate. Nat Rev Immunol15:415–428
CrossRef
Google scholar
|
[107] |
SigmundsdottirH, ButcherEC (2008) Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat Immunol9:981–987
CrossRef
Google scholar
|
[108] |
SigmundsdottirH, PanJ, DebesGF, AltC, HabtezionA, SolerD, ButcherEC (2007) DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat Immunol8:285–293
CrossRef
Google scholar
|
[109] |
SojkaDK, Plougastel-DouglasB, YangL, Pak-WittelMA, ArtyomovMN, IvanovaY, ZhongC, ChaseJM, RothmanPB, YuJ
CrossRef
Google scholar
|
[110] |
SoltLA, KumarN, NuhantP, WangY, LauerJL, LiuJ, IstrateMA, KameneckaTM, RoushWR, VidovicD
CrossRef
Google scholar
|
[111] |
SonnenbergGF, FouserLA, ArtisD (2011) Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol12:383–390
CrossRef
Google scholar
|
[112] |
SonnenbergGF, MonticelliLA, AlenghatT, FungTC, HutnickNA, KunisawaJ, ShibataN, GrunbergS, SinhaR, ZahmAM
CrossRef
Google scholar
|
[113] |
SpencerSP, WilhelmC, YangQ, HallJA, BouladouxN, BoydA, NutmanTB, UrbanJF Jr, WangJ, RamalingamTR
CrossRef
Google scholar
|
[114] |
SpitsH, ArtisD, ColonnaM, DiefenbachA, Di SantoJP, EberlG, KoyasuS, LocksleyRM, McKenzieAN, MebiusRE
CrossRef
Google scholar
|
[115] |
StanyaKJ, JacobiD, LiuS, BhargavaP, DaiL, GanglMR, InouyeK, BarlowJL, JiY, MizgerdJP
CrossRef
Google scholar
|
[116] |
TaubeC, TertiltC, GyulvesziG, DehzadN, KreymborgK, SchneeweissK, MichelE, ReuterS, RenauldJC, Arnold-SchildD
CrossRef
Google scholar
|
[117] |
TeunissenMB, MunnekeJM, BerninkJH, SpulsPI, ResPC, Te VeldeA, CheukS, BrouwerMW, MentingSP, EidsmoL
CrossRef
Google scholar
|
[118] |
van de PavertSA, OlivierBJ, GoverseG, VondenhoffMF, GreuterM, BekeP, KusserK, HopkenUE, LippM, NiederreitherK
CrossRef
Google scholar
|
[119] |
VelyF, BarlogisV, VallentinB, NevenB, PiperoglouC, EbboM, PerchetT, PetitM, YessaadN, TouzotF
CrossRef
Google scholar
|
[120] |
VestergaardC, JohansenC, ChristensenU, JustH, HohwyT, DeleuranM (2004) TARC augments TNF-alpha-induced CTACK production in keratinocytes. Exp Dermatol13:551–557
CrossRef
Google scholar
|
[121] |
VillanovaF, FlutterB, TosiI, GrysK, SreeneebusH, PereraGK, ChapmanA, SmithCH, Di MeglioP, NestleFO (2014) Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol134:984–991
CrossRef
Google scholar
|
[122] |
VivierE, RauletDH, MorettaA, CaligiuriMA, ZitvogelL, LanierLL, YokoyamaWM, UgoliniS (2011) Innate or adaptive immunity? The example of natural killer cells. Science331:44–49
CrossRef
Google scholar
|
[123] |
VivierE, UgoliniS, BlaiseD, ChabannonC, BrossayL (2012) Targeting natural killer cells and natural killer Tcells in cancer. Nat Rev Immunol12:239–252
CrossRef
Google scholar
|
[124] |
VonarbourgC, MorthaA, BuiVL, HernandezPP, KissEA, HoylerT, FlachM, BengschB, ThimmeR, HolscherC
CrossRef
Google scholar
|
[125] |
WalkerJA, BarlowJL, McKenzieAN (2013) Innate lymphoid cells—how did we miss them?Nat Rev Immunol13:75–87
CrossRef
Google scholar
|
[126] |
WeningerW, UlfmanLH, ChengG, SouchkovaN, QuackenbushEJ, LoweJB, von AndrianUH (2000) Specialized contributions by alpha(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity12:665–676
CrossRef
Google scholar
|
[127] |
WithersDR, HepworthMR, WangX, MackleyEC, HalfordEE, DuttonEE, MarriottCL, Brucklacher-WaldertV, VeldhoenM, KelsenJ
CrossRef
Google scholar
|
[128] |
XiaM, HuS, FuY, JinW, YiQ, MatsuiY, YangJ, McDowellMA, SarkarS, KaliaV, XiongN (2014) CCR10 regulates balanced maintenance and function of resident regulatory and effector T cells to promote immune homeostasis in the skin. J Allergy Clin Immunol134(634–644):e610
CrossRef
Google scholar
|
[129] |
XiongN, FuY, HuS, XiaM, YangJ (2012) CCR10 and its ligands in regulation of epithelial immunity and diseases. Protein Cell3:571–580
CrossRef
Google scholar
|
[130] |
XueL, SalimiM, PanseI, MjosbergJM, McKenzieAN, SpitsH, KlenermanP, OggG (2014) Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol133:1184–1194
CrossRef
Google scholar
|
[131] |
YagiR, ZhongC, NorthrupDL, YuF, BouladouxN, SpencerS, HuG, BarronL, SharmaS, NakayamaT
CrossRef
Google scholar
|
[132] |
YangQ, BhandoolaA (2016) The development of adult innate lymphoid cells. Curr Opin Immunol39:114–120
CrossRef
Google scholar
|
[133] |
YangQ, LiF, HarlyC, XingS, YeL, XiaX, WangH, WangX, YuS, ZhouX
CrossRef
Google scholar
|
[134] |
YangJ, HuS, ZhaoL, KaplanDH, PerdewGH, XiongN (2016) Selective programming of CCR10(+) innate lymphoid cells in skin-draining lymph nodes for cutaneous homeostatic regulation. Nat Immunol17:48–56
CrossRef
Google scholar
|
[135] |
YuX, WangY, DengM, LiY, RuhnKA, ZhangCC, HooperLV (2014) The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife. doi:10.7554/eLife.04406
CrossRef
Google scholar
|
[136] |
ZhengY, ValdezPA, DanilenkoDM, HuY, SaSM, GongQ, AbbasAR, ModrusanZ, GhilardiN, de SauvageFJ, OuyangW (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med14:282–289
CrossRef
Google scholar
|
[137] |
ZookEC, KeeBL (2016) Development of innate lymphoid cells. Nat Immunol17:775–782
CrossRef
Google scholar
|
/
〈 | 〉 |