Transcriptional regulators dictate innate lymphoid cell fates

Chao Zhong, Jinfang Zhu

PDF(1294 KB)
PDF(1294 KB)
Protein Cell ›› 2017, Vol. 8 ›› Issue (4) : 242-254. DOI: 10.1007/s13238-017-0369-7
REVIEW
REVIEW

Transcriptional regulators dictate innate lymphoid cell fates

Author information +
History +

Abstract

Research on innate lymphoid cells (ILC) has recently been a fast paced topic of immunological research. As ILCs are able to produce signature Th cytokine, ILCs have garnered considerable attention and have been described to represent the innate counterpart of the CD4+ T helper (Th) cells. The development and function of ILCs are precisely regulated by a network of crucial transcription factors, which are also involved in the development or differentiation of conventional natural killer (cNK) cells and T cells. In this review, we will summarize the key transcriptional regulators and their functions through each phases of ILC development. With the phase of ILC lineage commitment, we will focus in particular on the roles of the transcription regulators Id2 and GATA-3, which in collaboration with other transcriptional factors, are critically involved in the generation of ILC fate determined progenitors. Once an ILC lineage has been established, several other transcription factors are required for the specification and functional regulation of distinct mature ILC subsets. Thus, a comprehensive understanding of the interactions and regulatory mechanisms mediated by these transcription factors will help us to further understand how ILCs exert their helper-like functions and bridge the innate and adaptive immunity.

Keywords

innate lymphoid cell / transcription factors / GATA-3 / Id2

Cite this article

Download citation ▾
Chao Zhong, Jinfang Zhu. Transcriptional regulators dictate innate lymphoid cell fates. Protein Cell, 2017, 8(4): 242‒254 https://doi.org/10.1007/s13238-017-0369-7

References

[1]
AliahmadP, KayeJ (2008) Development of all CD4 T lineages requires nuclear factor TOX. J Exp Med205:245–256
CrossRef Google scholar
[2]
AliahmadP, de la TorreB, KayeJ (2010) Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat Immunol11:945–952
CrossRef Google scholar
[3]
ArtisD, SpitsH (2015) The biology of innate lymphoid cells. Nature517:293–301
CrossRef Google scholar
[4]
BandoJK, LiangHE, LocksleyRM (2015) Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat Immunol16:153–160
CrossRef Google scholar
[5]
BjorklundAK, ForkelM, PicelliS, KonyaV, TheorellJ, FribergD, SandbergR, MjosbergJ(2016) The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing. Nat Immunol17:451–460
CrossRef Google scholar
[6]
BoosMD, YokotaY, EberlG, KeeBL (2007) Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med204:1119–1130
CrossRef Google scholar
[7]
BrubakerSW, BonhamKS, ZanoniI, KaganJC (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol33:257–290
CrossRef Google scholar
[8]
CalifanoD, ChoJJ, UddinMN, LorentsenKJ, YangQ, BhandoolaA, LiH, AvramD (2015) Transcription factor Bcl11b controls identity and function of mature type 2 innate lymphoid cells. Immunity43:354–368
CrossRef Google scholar
[9]
CellaM, FuchsA, VermiW, FacchettiF, OteroK, LennerzJK, DohertyJM, MillsJC, ColonnaM (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature457:722–725
CrossRef Google scholar
[10]
CheaS, SchmutzS, BerthaultC, PerchetT, PetitM, Burlen-DefranouxO, GoldrathAW, RodewaldHR, CumanoA, GolubR(2016) Single-cell gene expression analyses reveal heterogeneous responsiveness of fetal innate lymphoid progenitors to notch signaling. Cell Rep14:1500–1516
CrossRef Google scholar
[11]
ConstantinidesMG, McDonaldBD, VerhoefPA, BendelacA (2014) A committed precursor to innate lymphoid cells. Nature508:397–401
CrossRef Google scholar
[12]
ConstantinidesMG, GudjonsonH, McDonaldBD, IshizukaIE, VerhoefPA, DinnerAR, BendelacA (2015) PLZF expression maps the early stages of ILC1 lineage development. Proc Natl Acad Sci USA112:5123–5128
CrossRef Google scholar
[13]
DaussyC, FaureF, MayolK, VielS, GasteigerG, CharrierE, BienvenuJ, HenryT, DebienE, HasanUA (2014) T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med211:563–577
CrossRef Google scholar
[14]
DudakovJA, HanashAM, van den BrinkMR (2015) Interleukin-22: immunobiology and pathology. Annu Rev Immunol33:747–785
CrossRef Google scholar
[15]
EberlG, ColonnaM, Di SantoJP, McKenzieAN (2015a) Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science348:aaa6566
CrossRef Google scholar
[16]
EberlG, Di SantoJP, VivierE (2015b) The brave new world of innate lymphoid cells. Nat Immunol16:1–5
CrossRef Google scholar
[17]
EbiharaT, SongC, RyuSH, Plougastel-DouglasB, YangL, LevanonD, GronerY, BernMD, StappenbeckTS, ColonnaM (2015) Runx3 specifies lineage commitment of innate lymphoid cells. Nat Immunol16:1124–1133
CrossRef Google scholar
[18]
FallonPG, BallantyneSJ, ManganNE, BarlowJL, DasvarmaA, HewettDR, McIlgormA, JolinHE, McKenzieAN (2006) Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med203:1105–1116
CrossRef Google scholar
[19]
FinkeD (2005) Fate and function of lymphoid tissue inducer cells. Curr Opin Immunol17:144–150
CrossRef Google scholar
[20]
GascoyneDM, LongE, Veiga-FernandesH, de BoerJ, WilliamsO, SeddonB, ColesM, KioussisD, BradyHJ (2009) The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol10:1118–1124
CrossRef Google scholar
[21]
GasteigerG, FanX, DikiyS, LeeSY, RudenskyAY (2015) Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science350:981–985
CrossRef Google scholar
[22]
GermainRN (2002) T-cell development and the CD4−CD8 lineage decision. Nat Rev Immunol2:309–322
CrossRef Google scholar
[23]
GordonSM, ChaixJ, RuppLJ, WuJ, MaderaS, SunJC, LindstenT, ReinerSL (2012) The transcription factors T-bet and Eomes control key checkpoints of natural killer cellmaturation. Immunity36:55–67
CrossRef Google scholar
[24]
GotoY, ObataT, KunisawaJ, SatoS, IvanovII, LamichhaneA, TakeyamaN, KamiokaM, SakamotoM, MatsukiT (2014) Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science345:1254009
CrossRef Google scholar
[25]
Gury-BenAriM, ThaissCA, SerafiniN, WinterDR, GiladiA, Lara-AstiasoD, LevyM, SalameTM, WeinerA, DavidE (2016) The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell166(1231–1246):e1213
CrossRef Google scholar
[26]
HalimTY, MacLarenA, RomanishMT, GoldMJ, McNagnyKM, TakeiF (2012) Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity37:463–474
CrossRef Google scholar
[27]
HalimTY, SteerCA, MathaL, GoldMJ, Martinez-GonzalezI, McNagnyKM, McKenzieAN, TakeiF (2014) Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity40:425–435
CrossRef Google scholar
[28]
HalimTY, HwangYY, ScanlonST, ZaghouaniH, GarbiN, FallonPG, McKenzieAN (2016) Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat Immunol17:57–64
CrossRef Google scholar
[29]
HanashAM, DudakovJA, HuaG, O’ConnorMH, YoungLF, SingerNV, WestML, JenqRR, HollandAM, KappelLW (2012) Interleukin-22 protects intestinal stem cells from immunemediated tissue damage and regulates sensitivity to graft versus host disease. Immunity37:339–350
CrossRef Google scholar
[30]
HepworthMR, MonticelliLA, FungTC, ZieglerCG, GrunbergS, SinhaR, MantegazzaAR, MaHL, CrawfordA, AngelosantoJM (2013) Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature498:113–117
CrossRef Google scholar
[31]
HepworthMR, FungTC, MasurSH, KelsenJR, McConnellFM, DubrotJ, WithersDR, HuguesS, FarrarMA, ReithW (2015) Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells. Science348:1031–1035
CrossRef Google scholar
[32]
HoIC, TaiTS, PaiSY (2009) GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol9:125–135
CrossRef Google scholar
[33]
HoylerT, KloseCS, SouabniA, Turqueti-NevesA, PfeiferD, RawlinsEL, VoehringerD, BusslingerM, DiefenbachA (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity37:634–648
CrossRef Google scholar
[34]
IkawaT, HiroseS, MasudaK, KakugawaK, SatohR, Shibano-SatohA, KominamiR, KatsuraY, KawamotoH (2010) An essential developmental checkpoint for production of the T cell lineage. Science329:93–96
CrossRef Google scholar
[35]
IshizukaIE, CheaS, GudjonsonH, ConstantinidesMG, DinnerAR, BendelacA, GolubR (2016) Single-cell analysis defines the divergence between the innate lymphoid cell lineage and lymphoid tissue-inducer cell lineage. Nat Immunol17:269–276
CrossRef Google scholar
[36]
KeeBL (2009) E and ID proteins branch out. Nat Rev Immunol9:175–184
CrossRef Google scholar
[37]
KimMH, TaparowskyEJ, KimCH (2015) Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity43:107–119
CrossRef Google scholar
[38]
KissEA, VonarbourgC, KopfmannS, HobeikaE, FinkeD, EsserC, DiefenbachA (2011) Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science334:1561–1565
CrossRef Google scholar
[39]
KloseCS, KissEA, SchwierzeckV, EbertK, HoylerT, d’HarguesY, GoppertN, CroxfordAL, WaismanA, TanriverY, DiefenbachA (2013) A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells. Nature494:261–265
CrossRef Google scholar
[40]
KloseCS, FlachM, MohleL, RogellL, HoylerT, EbertK, FabiunkeC, PfeiferD, SexlV, Fonseca-PereiraD (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell157:340–356
CrossRef Google scholar
[41]
LeeJS, CellaM, McDonaldKG, GarlandaC, KennedyGD, NukayaM, MantovaniA, KopanR, BradfieldCA, NewberryRD, ColonnaM (2011) AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol13:144–151
CrossRef Google scholar
[42]
LeeMW, OdegaardJI, MukundanL, QiuY, MolofskyAB, NussbaumJC, YunK, LocksleyRM, ChawlaA (2015) Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell160:74–87
CrossRef Google scholar
[43]
LiS, HellerJJ, BostickJW, LeeA, SchjervenH, KastnerP, ChanS, ChenZE, ZhouL (2016) Ikaros inhibits group 3 innate lymphoid cell development and function by suppressing the aryl hydrocarbon receptor pathway. Immunity45:185–197
CrossRef Google scholar
[44]
LindemansCA, CalafioreM, MertelsmannAM, O’ConnorMH, DudakovJA, JenqRR, VelardiE, YoungLF, SmithOM, LawrenceG (2015) Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature528:560–564
CrossRef Google scholar
[45]
LoBC, GoldMJ, HughesMR, AntignanoF, ValdezY, ZaphC, HarderKW, McNagnyKM (2016) The orphan nuclear receptor RORα and group 3 innate lymphoid cells drive fibrosis in a mouse model of Crohn’s disease. Sci Immunol1(3):aaf8864
CrossRef Google scholar
[46]
LuciC, ReyndersA, IvanovII, CognetC, ChicheL, ChassonL, HardwigsenJ, AnguianoE, BanchereauJ, ChaussabelD (2009) Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol10:75–82
CrossRef Google scholar
[47]
MielkeLA, GroomJR, RankinLC, SeilletC, MassonF, PutoczkiT, BelzGT (2013a) TCF-1 controls ILC2 and NKp46+RORgammat+ innate lymphocyte differentiation and protection in intestinal inflammation. J Immunol191:4383–4391
CrossRef Google scholar
[48]
MielkeLA,JonesSA, RaverdeauM, HiggsR, StefanskaA, GroomJR, MisiakA, DunganLS, SuttonCE, StreubelG (2013b) Retinoic acid expression associates with enhanced IL-22 production by gammadelta T cells and innate lymphoid cells and attenuation of intestinal inflammation. J Exp Med210:1117–1124
CrossRef Google scholar
[49]
MonticelliLA, SonnenbergGF, AbtMC, AlenghatT, ZieglerCG, DoeringTA, AngelosantoJM, LaidlawBJ, YangCY, SathaliyawalaT (2011) Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol12:1045–1054
CrossRef Google scholar
[50]
MoroK, YamadaT, TanabeM, TakeuchiT, IkawaT, KawamotoH, FurusawaJ, OhtaniM, FujiiH, KoyasuS (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature463:540–544
CrossRef Google scholar
[51]
NeillDR, WongSH, BellosiA, FlynnRJ, DalyM, LangfordTK, BucksC, KaneCM, FallonPG, PannellR (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature464:1367–1370
CrossRef Google scholar
[52]
NussbaumJC, Van DykenSJ, von MoltkeJ, ChengLE, MohapatraA, MolofskyAB, ThorntonEE, KrummelMF, ChawlaA, LiangHE, LocksleyRM (2013) Type 2 innate lymphoid cells control eosinophil homeostasis. Nature502:245–248
CrossRef Google scholar
[53]
OliphantCJ, HwangYY, WalkerJA, SalimiM, WongSH, BrewerJM, EnglezakisA, BarlowJL, HamsE, ScanlonST (2014) MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity41:283–295
CrossRef Google scholar
[54]
O’SheaJJ, PaulWE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science327:1098–1102
CrossRef Google scholar
[55]
PaiSY, TruittML, TingCN, LeidenJM, GlimcherLH, HoIC (2003) Critical roles for transcription factor GATA-3 in thymocyte development. Immunity19:863–875
CrossRef Google scholar
[56]
PantelyushinS, HaakS, IngoldB, KuligP, HeppnerFL, NavariniAA, BecherB (2012) Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest122:2252–2256
CrossRef Google scholar
[57]
PickardJM, MauriceCF, KinnebrewMA, AbtMC, SchentenD, GolovkinaTV, BogatyrevSR, IsmagilovRF, PamerEG, TurnbaughPJ, ChervonskyAV (2014) Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature514:638–641
CrossRef Google scholar
[58]
PossotC, SchmutzS, CheaS, BoucontetL, LouiseA, CumanoA, GolubR (2011) Notch signaling is necessary for adult, but not fetal, development of RORgammat(+) innate lymphoid cells. Nat Immunol12:949–958
CrossRef Google scholar
[59]
PriceAE, LiangHE, SullivanBM, ReinhardtRL, EisleyCJ, ErleDJ, LocksleyRM (2010) Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A107:11489–11494
CrossRef Google scholar
[60]
QiuJ, HellerJJ, GuoX, ChenZM, FishK, FuYX, ZhouL (2012) The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity36:92–104
CrossRef Google scholar
[61]
RadtkeF, MacDonaldHR, Tacchini-CottierF (2013) Regulation of innate and adaptive immunity by Notch. Nat Rev Immunol13:427–437
CrossRef Google scholar
[62]
SaenzSA, SiracusaMC, MonticelliLA, ZieglerCG, KimBS, BrestoffJR, PetersonLW, WherryEJ, GoldrathAW, BhandoolaA, ArtisD (2013) IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells. J Exp Med210:1823–1837
CrossRef Google scholar
[63]
SamsonSI, RichardO, TavianM, RansonT, VosshenrichCA, ColucciF, BuerJ, GrosveldF, GodinI, Di SantoJP (2003) GATA-3 promotes maturation, IFN-gamma production, and liver-specific homing of NK cells. Immunity19:701–711
CrossRef Google scholar
[64]
SanosSL, BuiVL, MorthaA, OberleK, HenersC, JohnerC, DiefenbachA (2009) RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol10:83–91
CrossRef Google scholar
[65]
SchjervenH, McLaughlinJ, ArenzanaTL, FrietzeS, ChengD, WadsworthSE, LawsonGW, BensingerSJ, FarnhamPJ, WitteON, SmaleST (2013) Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol14:1073–1083
CrossRef Google scholar
[66]
SciumeG, HiraharaK, TakahashiH, LaurenceA, VillarinoAV, SingletonKL, SpencerSP, WilhelmC, PoholekAC, VahediG (2012) Distinct requirements for T-bet in gut innate lymphoid cells. J Exp Med209:2331–2338
CrossRef Google scholar
[67]
SeehusCR, AliahmadP, de la TorreB, IlievID, SpurkaL, FunariVA, KayeJ (2015) The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat Immunol16:599–608
CrossRef Google scholar
[68]
SeilletC, RankinLC, GroomJR, MielkeLA, TellierJ, ChopinM, HuntingtonND, BelzGT, CarottaS (2014) Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med211:1733–1740
CrossRef Google scholar
[69]
SerafiniN, Klein WolterinkRG, Satoh-TakayamaN, XuW, VosshenrichCA, HendriksRW, Di SantoJP (2014) Gata3 drives development of RORgammat+ group 3 innate lymphoid cells. J Exp Med211:199–208
CrossRef Google scholar
[70]
SojkaDK, Plougastel-DouglasB, YangL, Pak-WittelMA, ArtyomovMN, IvanovaY, ZhongC, ChaseJM, RothmanPB, YuJ (2014) Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife3:e01659
CrossRef Google scholar
[71]
SpoonerCJ, LeschJ, YanD, KhanAA, AbbasA, Ramirez-CarrozziV, ZhouM, SorianoR, Eastham-AndersonJ, DiehlL (2013) Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat Immunol14:1229–1236
CrossRef Google scholar
[72]
SteinkeFC, YuS, ZhouX, HeB, YangW, ZhouB, KawamotoH, ZhuJ, TanK, XueHH (2014) TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4(+) T cell fate and interact with Runx3 to silence Cd4 in CD8(+) T cells. Nat Immunol15:646–656
CrossRef Google scholar
[73]
TachibanaM, TennoM, TezukaC, SugiyamaM, YoshidaH, TaniuchiI (2011) Runx1/Cbfbeta2 complexes are required for lymphoid tissue inducer cell differentiation at two developmental stages. J Immunol186:1450–1457
CrossRef Google scholar
[74]
TaghonT, YuiMA, RothenbergEV (2007) Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nat Immunol8:845–855
CrossRef Google scholar
[75]
TakatoriH, KannoY, WatfordWT, TatoCM, WeissG, IvanovII, LittmanDR, O’SheaJJ (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med206:35–41
CrossRef Google scholar
[76]
van de PavertSA, FerreiraM, DominguesRG, RibeiroH, MolenaarR, Moreira-SantosL, AlmeidaFF, IbizaS, BarbosaI, GoverseG (2014) Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature508:123–127
CrossRef Google scholar
[77]
Van DykenSJ, NussbaumJC, LeeJ, MolofskyAB, LiangHE, PollackJL, GateRE, HaliburtonGE, YeCJ, MarsonA (2016) A tissue checkpoint regulates type 2 immunity. Nat Immunol17:1381–1387
CrossRef Google scholar
[78]
VerykokakisM, ZookEC, KeeBL (2014) ID’ing innate and innatelike lymphoid cells. Immunol Rev261:177–197
CrossRef Google scholar
[79]
WalkerJA, OliphantCJ, EnglezakisA, YuY, ClareS, RodewaldHR, BelzGP, LiuPG, FallonAN, McKenzie(2015) Bcl11b is essential for group 2 innate lymphoid cell development. J Exp Med212:875–882
CrossRef Google scholar
[80]
WangL, WildtKF, ZhuJ, ZhangX, FeigenbaumL, TessarolloL, PaulWE, FowlkesBJ, BosselutR (2008) Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4(+) T cells. Nat Immunol9:1122–1130
CrossRef Google scholar
[81]
WeberBN, ChiAW, ChavezA, Yashiro-OhtaniY, YangQ, ShestovaO, BhandoolaA (2011) A critical role for TCF-1 in T-lineage specification and differentiation. Nature476:63–68
CrossRef Google scholar
[82]
WilhelmC, HirotaK, StieglitzB, Van SnickJ, TolainiM, LahlK, SparwasserT, HelmbyH, StockingerB (2011) An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol12:1071–1077
CrossRef Google scholar
[83]
WongSH, WalkerJA, JolinHE, DrynanLF, HamsE, CameloA, BarlowJL, NeillDR, PanovaV, KochU(2012) Transcription factor RORalpha is critical for nuocyte development. Nat Immunol13:229–236
CrossRef Google scholar
[84]
WoolfE, XiaoC, FainaruO, LotemJ, RosenD, NegreanuV, BernsteinY, GoldenbergD, BrennerO, BerkeG (2003)Runx3 and Runx1 are required for CD8 Tcell development during thymopoiesis. Proc Natl Acad Sci USA100:7731–7736
CrossRef Google scholar
[85]
XuW, DominguesRG, Fonseca-PereiraD, FerreiraM, RibeiroH, Lopez-LastraS, MotomuraY, Moreira-SantosL, BihlF, BraudV (2015) NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep10:2043–2054
CrossRef Google scholar
[86]
YagiR, ZhongC, NorthrupDL, YuF, BouladouxN, SpencerS, HuG, BarronL, SharmaS, NakayamaT (2014) The transcription factor GATA3 is critical for the development of all IL-7Ralphaexpressing innate lymphoid cells. Immunity40:378–388
CrossRef Google scholar
[87]
YangQ, MonticelliLA, SaenzSA, ChiAW, SonnenbergGF, TangJ, De ObaldiaME, BailisW, BrysonJL, ToscanoK (2013) Tcell factor 1 is required for group 2 innate lymphoid cell generation. Immunity38:694–704
CrossRef Google scholar
[88]
YangQ, LiF, HarlyC, XingS, YeL, XiaX, WangH, WangX, YuS, ZhouX (2015) TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat Immunol16:1044–1050
CrossRef Google scholar
[89]
YokotaY, MansouriA, MoriS, SugawaraS, AdachiS, NishikawaS, GrussP (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature397:702–706
CrossRef Google scholar
[90]
YoshidaT, NgSY, GeorgopoulosK(2010) Awakening lineage potential by Ikaros-mediated transcriptional priming. Curr Opin Immunol22:154–160
CrossRef Google scholar
[91]
YuX, WangY, DengM, LiY, RuhnKA, ZhangCC, HooperLV (2014) The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. Elife3: e04406
CrossRef Google scholar
[92]
YuY, WangC, ClareS, WangJ, LeeSC, BrandtC, BurkeS, LuL, HeD, JenkinsNA (2015) The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development. J Exp Med212:865–874
CrossRef Google scholar
[93]
YuY, TsangJC, WangC, ClareS, WangJ, ChenX, BrandtC, KaneL, CamposLS, LuL (2016) Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature539:102–106
CrossRef Google scholar
[94]
YuiMA, RothenbergEV (2014) Developmental gene networks: a triathlon on the course to Tcell identity. Nat Rev Immunol14:529–545
CrossRef Google scholar
[95]
ZhongC, ZhuJ (2015a) Bcl11b drives the birth of ILC2 innate lymphocytes. J Exp Med212:828
CrossRef Google scholar
[96]
ZhongC, ZhuJ (2015b) Transcriptional regulatory network for the development of innate lymphoid cells. Mediat Inflamm2015:264502
CrossRef Google scholar
[97]
ZhongC, CuiK, WilhelmC, HuG, MaoK, BelkaidY, ZhaoK, ZhuJ (2016) Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nat Immunol17:169–178
CrossRef Google scholar
[98]
ZhouL (2016) AHR Function in Lymphocytes: Emerging Concepts. Trends Immunol37:17–31
CrossRef Google scholar
[99]
ZhuJ,GuoL, MinB, WatsonCJ, Hu-LiJ, YoungHA, TsichlisPN, PaulWE (2002) Growth factor independent-1 induced by IL-4 regulates Th2 cell proliferation. Immunity16:733–744
CrossRef Google scholar
[100]
ZhuJ, JankovicD, GrinbergA, GuoL, PaulWE (2006) Gfi-1 plays an important role in IL-2-mediated Th2 cell expansion. Proc Natl Acad Sci USA103:18214–18219
CrossRef Google scholar
[101]
ZookEC, KeeBL (2016) Development of innate lymphoid cells. Nat Immunol17:775–782
CrossRef Google scholar
[102]
ZookEC, RamirezK, GuoX, van der VoortG, SigvardssonM, SvenssonEC, FuYX, KeeBL (2016) The ETS1 transcription factor is required for the development and cytokine-induced expansion of ILC2. J Exp Med213:687–696
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at Springerlink.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(1294 KB)

Accesses

Citations

Detail

Sections
Recommended

/