Flotillin-1 downregulates K+ current by directly coupling with Kv2.1 subunit

Rui Liu, Guang Yang, Meng-Hua Zhou, Yu He, Yan-Ai Mei, Yu Ding

PDF(3364 KB)
PDF(3364 KB)
Protein Cell ›› 2016, Vol. 7 ›› Issue (6) : 455-460. DOI: 10.1007/s13238-016-0276-3
LETTER
LETTER

Flotillin-1 downregulates K+ current by directly coupling with Kv2.1 subunit

Author information +
History +

Cite this article

Download citation ▾
Rui Liu, Guang Yang, Meng-Hua Zhou, Yu He, Yan-Ai Mei, Yu Ding. Flotillin-1 downregulates K+ current by directly coupling with Kv2.1 subunit. Protein Cell, 2016, 7(6): 455‒460 https://doi.org/10.1007/s13238-016-0276-3

References

[1]
Babuke T, Ruonala M, Meister M, Amaddii M, Genzler C, Esposito A, Tikkanen R (2009) Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis. Cell Signal 21:1287–1297
CrossRef Google scholar
[2]
Browman DT, Hoegg MB, Robbins SM (2007) The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 17:394–402
CrossRef Google scholar
[3]
Kihira Y, Hermanstyne TO, Misonou H (2010) Formation of heteromeric Kv2 channels in mammalian brain neurons. J Biol Chem 285:15048–15055
CrossRef Google scholar
[4]
Langhorst MF, Reuter A, Stuermer CA (2005) Scaffolding micro-domains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 62:2228–2240
CrossRef Google scholar
[5]
Langhorst MF, Reuter A, Jaeger FA, Wippich FM, Luxenhofer G, Plattner H, Stuermer CA (2008) Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2. Eur J Cell Biol 87:211–226
CrossRef Google scholar
[6]
Martens JR, O’Connell K, Tamkun M (2004) Targeting of ion channels to membrane microdomains: localization of KV chan-nels to lipid rafts. Trends Pharmacol Sci 25:16–21
CrossRef Google scholar
[7]
Monje FJ, Divisch I, Demit M, Lubec G, Pollak DD (2013) Flotillin-1 is an evolutionary-conserved memory-related protein up-regulated in implicit and explicit learning paradigms. Ann Med 45:301–307
CrossRef Google scholar
[8]
Munderloh C, Solis GP, Bodrikov V, Jaeger FA, Wiechers M, Malaga-Trillo E, Stuermer CA (2009) Reggies/flotillins regulate retinal axon regeneration in the zebrafish optic nerve and differentiation of hippocampal and N2a neurons. J Neurosci 29:6607–6615
CrossRef Google scholar
[9]
O’Connell KM, Loftus R, Tamkun MM (2010) Localization-dependent activity of the Kv2.1 delayed-rectifier K+ channel. Proc Natl Acad Sci USA 107:12351–12356
CrossRef Google scholar
[10]
Pust S, Klokk TI, Musa N, Jenstad M, Risberg B, Erikstein B, Tcatchoff L, Liestol K, Danielsen HE, van Deurs B (2013) Flotillins as regulators of ErbB2 levels in breast cancer. Onco-gene 32:3443–3451
CrossRef Google scholar
[11]
Solis GP, Schrock Y, Hulsbusch N, Wiechers M, Plattner H, Stuermer CA (2012) Reggies/flotillins regulate E-cadherin-medi-ated cell contact formation by affecting EGFR trafficking. Mol Biol Cell 23:1812–1825
CrossRef Google scholar
[12]
Stuermer CA (2011) Microdomain-forming proteins and the role of the reggies/flotillins during axon regeneration in zebrafish. Biochim Biophys Acta 1812:415–422
CrossRef Google scholar
[13]
Swanwick CC, Shapiro ME, Vicini S, Wenthold RJ (2010) Flotillin-1 promotes formation of glutamatergic synapses in hippocampal neurons. Dev Neurobiol 70:875–883
[14]
Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA (2005) Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 57:387–395
CrossRef Google scholar
[15]
Zhuang JL, Wang CY, Zhou MH, Duan KZ, Mei YA (2012) TGF-beta1 enhances Kv2.1 potassium channel protein expression and promotes maturation of cerebellar granule neurons. J Cell Physiol 227:297–307
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(3364 KB)

Accesses

Citations

Detail

Sections
Recommended

/