In vitro expression and analysis of the 826 human G protein-coupled receptors

Xuechen Lv, Junlin Liu, Qiaoyun Shi, Qiwen Tan, Dong Wu, John J. Skinner, Angela L. Walker, Lixia Zhao, Xiangxiang Gu, Na Chen, Lu Xue, Pei Si, Lu Zhang, Zeshi Wang, Vsevolod Katritch, Zhi-jie Liu, Raymond C. Stevens

PDF(784 KB)
PDF(784 KB)
Protein Cell ›› 2016, Vol. 7 ›› Issue (5) : 325-337. DOI: 10.1007/s13238-016-0263-8
RESEARCH ARTICLE
RESEARCH ARTICLE

In vitro expression and analysis of the 826 human G protein-coupled receptors

Author information +
History +

Abstract

G protein-coupled receptors (GPCRs) are involved in all humanphysiological systems where they are responsible for transducing extracellular signals into cells. GPCRs signal in response to a diverse array of stimuli including light, hormones, and lipids, where these signals affect downstream cascades to impact both health and disease states. Yet, despite their importance as therapeutic targets, detailed molecular structures of only 30 GPCRs have been determined to date. A key challenge to their structure determination is adequate protein expression. Here we report the quantification of protein expression in an insect cell expression system for all 826humanGPCRs using two different fusion constructs. Expression characteristics are analyzed in aggregate and among each of the five distinct subfamilies. These data can be used to identify trends related to GPCR expression between different fusion constructs and between different GPCR families, and to prioritize lead candidates for future structure determination feasibility.

Keywords

G protein-coupled receptors / insect / protein expression / surface expression analysis / fusion construct

Cite this article

Download citation ▾
Xuechen Lv, Junlin Liu, Qiaoyun Shi, Qiwen Tan, Dong Wu, John J. Skinner, Angela L. Walker, Lixia Zhao, Xiangxiang Gu, Na Chen, Lu Xue, Pei Si, Lu Zhang, Zeshi Wang, Vsevolod Katritch, Zhi-jie Liu, Raymond C. Stevens. In vitro expression and analysis of the 826 human G protein-coupled receptors. Protein Cell, 2016, 7(5): 325‒337 https://doi.org/10.1007/s13238-016-0263-8

References

[1]
Abagyan RA, Orry A, Raush E, Budagyan L, Totrov M (2015) ICM manual. MolSoft LLC, La Jolla
[2]
Chun E, Thompson AA, Liu W, Roth CB, Griffith MT, Katritch V, Kunken J, Xu F, Cherezov V, Hanson MA (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors . Structure 20:967–976
CrossRef Google scholar
[3]
de March CA, Kim SK, Antonczak S, Goddard WA 3rd, Golebiowski J (2015) G protein-coupled odorant receptors: from sequence to structure . Protein Sci 24:1543–1548
CrossRef Google scholar
[4]
Deriu DG, Gassmann M, Firbank S, Ristig D, Lampert C, Mosbacher J, Froestl W, Kaupmann K, Bettler B, Grutter MG (2005) Determination of the minimal functional ligand-binding domain of the GABAB1b receptor . Biochem J 386:423–431
CrossRef Google scholar
[5]
Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, Roth BL, Stevens RC (2014) Molecular control of delta-opioid receptor signalling . Nature 506:191–196
CrossRef Google scholar
[6]
Gao Y-L, Miu Q, Zhang H-D, Wen H, Qin H-B, Xie Z (2010) Advances on olfactory receptor gene . Hereditas (Beijing) 32:17–24
CrossRef Google scholar
[7]
Hanson MA, Brooun A, Baker KA, Jaakola VP, Roth C, Chien EY, Alexandrov A, Velasquez J, Davis L, Griffith M, Moy K, Ganser-Pornillos BK, Hua Y, Kuhn P, Ellis S, Yeager M, Stevens RC (2007) Profiling of membrane protein variants in baculovirus system coupling cell-surface detection with small-scale parallel expression . Protein Expr Purif 56:85–92
CrossRef Google scholar
[8]
Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC (2012) Crystal structure of a lipid G protein-coupled receptor . Science 335:851–855
CrossRef Google scholar
[9]
Isberg V, de Graaf C, Bortolato A, Cherezov V, Katritch V, Marshall FH, Mordalski S, Pin J-P, Stevens RC, Vriend G (2015) Generic GPCR residue numbers – aligning topology maps while minding the gaps . Trends Pharmacol Sci 36:22–31
CrossRef Google scholar
[10]
Jiang Y, Matsunami H (2015) Mammalian odorant receptors: functional evolution and variation . Curr Opin Neurobiol 34:54–60
CrossRef Google scholar
[11]
Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures . Trends Pharmacol Sci 33:17–27
CrossRef Google scholar
[12]
Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G-protein-coupled receptors superfamily . Annu Rev Pharmacol Toxicol 53:531
CrossRef Google scholar
[13]
Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions . Science 337:232–236
CrossRef Google scholar
[14]
Mody NH, Hermans E, Nahorski SR, Challiss RS (1999) Inhibition of N-linked glycosylation of the human type 1alpha metabotropic glutmate receptor by tunicamycin: effects on cell-surface receptor expression and function . Neuropharmacology 38:1485–1492
CrossRef Google scholar
[15]
Norskov-Lauritsen L, Brauner-Osborne H (2015) Role of posttranslational modifications on structure, function and pharmacology of class C G protein-coupled receptors . Eur J Pharmacol 763:233–240
CrossRef Google scholar
[16]
Norskov-Lauritsen L, Jorgensen S, Brauner-Osborne H (2015) N-glycosylation and disulfide bonding affects GPRC6A receptor expression, function, and dimerization . FEBS Lett 589:588–597
CrossRef Google scholar
[17]
Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G proteincoupled receptor . Science 289:739–745
CrossRef Google scholar
[18]
Rask-Andersen M, Masuram S, Schioth HB (2014) The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication . Annu Rev Pharmacol Toxicol 54:9–26
CrossRef Google scholar
[19]
Sanz G, Leray I, Dewaele A, Sobilo J, Lerondel S, Bouet S, Grebert D, Monnerie R, Pajot-Augy E, Mir LM (2014) Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation . PLoS One 9:e85110
[20]
Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS (2013) Structure of the human glucagons class B G-protein-coupled receptor . Nature 499:444–449
CrossRef Google scholar
[21]
Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, Rosen H, Wuthrich K (2013) The GPCR Network: a large-scale collaboration to determine human GPCR structure and function . Nat Rev Drug Discov 12:25–34
CrossRef Google scholar
[22]
Wacker D (2013) structural features for functional selectivity at serotonin receptors . Science 340:615–619
CrossRef Google scholar
[23]
Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists . Science 330:1066–1071
CrossRef Google scholar
[24]
Zhang J, Zhang K, Gao ZG, Paoletta S, Zhang D, Han GW, Li T, Ma L, Zhang W, Muller CE (2014) Agonist-bound structure of the human P2Y12 receptor . Nature 509:119–122
CrossRef Google scholar
[25]
Zhao Q, Wu BL (2012) Ice breaking in GPCR structural biology . Acta Pharmacol Sin 33:324–334
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(784 KB)

Accesses

Citations

Detail

Sections
Recommended

/