Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson’s disease
Pingping Song, Shanshan Li, Hao Wu, Ruize Gao, Ruize Gao, Guanhua Rao, Dongmei Wang, Ziheng Chen, Biao Ma, Hongxia Wang, Nan Sui, Haiteng Deng, Zhuohua Zhang, Tieshan Tang, Zheng Tan, Zehan Han, Tieyuan Lu, Yushan Zhu, Quan Chen
Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson’s disease
Mutations or inactivation of parkin, an E3 ubiquitin ligase, are associated with familial form or sporadic Parkinson’s disease (PD), respectively, which manifested with the selective vulnerability of neuronal cells in substantia nigra (SN) and striatum (STR) regions. However, the underlying molecular mechanism linking parkin with the etiology of PD remains elusive. Here we report that p62, a critical regulator for protein quality control, inclusion body formation, selective autophagy and diverse signaling pathways, is a new substrate of parkin. P62 levels were increased in the SN and STR regions, but not in other brain regions in parkin knockout mice. Parkin directly interacts with and ubiquitinates p62 at the K13 to promote proteasomal degradation of p62 even in the absence of ATG5. Pathogenic mutations, knockdown of parkin or mutation of p62 at K13 prevented the degradation of p62. We further showed that parkin deficiency mice have pronounced loss of tyrosine hydroxylase positive neurons and have worse performance in motor test when treated with 6-hydroxydopamine hydrochloride in aged mice. These results suggest that, in addition to their critical role in regulating autophagy, p62 are subjected to parkin mediated proteasomal degradation and implicate that the dysregulation of parkin/p62 axis may involve in the selective vulnerability of neuronal cells during the onset of PD pathogenesis.
parkin / sequestosome1/p62 / ubiquitin / substantia nigra
[1] |
Babu JR, Geetha T, Wooten MW (2005) Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation . J Neurochem 94:192–203
CrossRef
Google scholar
|
[2] |
Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming RC, Harris GL, Nezis IP, Schubert DR, Simonsen A
CrossRef
Google scholar
|
[3] |
Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, Foreman O, Kirkpatrick DS, Sheng M (2014) The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy . Nature 510:370–375
CrossRef
Google scholar
|
[4] |
Biskup S, Gerlach M, Kupsch A, Reichmann H, Riederer P, Vieregge P, Wullner U, Gasser T (2008) Genes associatedwith Parkinson syndrome . J Neurol 255(Suppl 5):8–17
CrossRef
Google scholar
|
[5] |
Bjorkoy G, Lamark T, Johansen T (2006) p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery . Autophagy 2:138–139
CrossRef
Google scholar
|
[6] |
Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration . Nat Med 10(Suppl):S2–S9
CrossRef
Google scholar
|
[7] |
Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson JH, Randle SJ, Wray S, Lewis PA, Houlden H
CrossRef
Google scholar
|
[8] |
Chen Y, Dorn GW 2nd (2013) PINK1-phosphorylated mitofusin2isa Parkin receptor for culling damaged mitochondria . Science 340:471–475
CrossRef
Google scholar
|
[9] |
Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, Dawson TM (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function . Science 304:1328–1331
CrossRef
Google scholar
|
[10] |
Dawson TM (2007) Unraveling the role of defective genes in Parkinson’s disease . Parkinsonism Relat Disord 13(Suppl 3): S248–S249
CrossRef
Google scholar
|
[11] |
Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease . Science 302:819–822
CrossRef
Google scholar
|
[12] |
Dawson TM, Dawson VL (2010) The role of parkin in familial and sporadic Parkinson’s disease . Mov Disord 25(Suppl 1):S32–S39
CrossRef
Google scholar
|
[13] |
Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects . Nat Rev Genet 7:306–318
CrossRef
Google scholar
|
[14] |
Fecto F, Yan J, Vemula SP, Liu E, Yang Y, Chen W, Zheng JG, Shi Y, Siddique N, Arrat H
CrossRef
Google scholar
|
[15] |
Gegg ME, Schapira AH (2011) PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2: implications for Parkinson disease pathogenesis . Autophagy 7:243–245
CrossRef
Google scholar
|
[16] |
Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy . Hum Mol Genet19:4861–4870
CrossRef
Google scholar
|
[17] |
Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ
CrossRef
Google scholar
|
[18] |
Ichimura Y, Komatsu M (2010) Selective degradation of p62 by autophagy . Semin Immunopathol 32:431–436
CrossRef
Google scholar
|
[19] |
Ishikawa A, Tsuji S (1996) Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism . Neurology 47:160–166
CrossRef
Google scholar
|
[20] |
Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, Laville M, Pratt J, Corti O, Pradier L
CrossRef
Google scholar
|
[21] |
Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, Johansen T (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription . J Biol Chem 285:22576–22591
CrossRef
Google scholar
|
[22] |
Johnson BN, Berger AK, Cortese GP, Lavoie MJ (2012) The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax . Proc Natl Acad Sci USA 109:6283–6288
CrossRef
Google scholar
|
[23] |
Kahle PJ, Haass C (2004) How does parkin ligate ubiquitin to Parkinson’s disease ? EMBO Rep 5:681–685
CrossRef
Google scholar
|
[24] |
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity . J Cell Biol 205:143–153
CrossRef
Google scholar
|
[25] |
Kawahara K, Hashimoto M, Bar-On P, Ho GJ, Crews L, Mizuno H, Rockenstein E, Imam SZ, Masliah E (2008) alpha-Synuclein aggregates interfere with Parkin solubility and distribution: role in the pathogenesis of Parkinson disease . J Biol Chem 283:6979–6987
CrossRef
Google scholar
|
[26] |
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM (2014) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 . Biochem J460:127–139
CrossRef
Google scholar
|
[27] |
Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy . Mol Cell 34:259–269
CrossRef
Google scholar
|
[28] |
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N(1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism . Nature392:605–608
CrossRef
Google scholar
|
[29] |
Ko HS, Kim SW, Sriram SR, Dawson VL, Dawson TM (2006) Identification of far upstream element-binding protein-1 as an authentic Parkin substrate . J Biol Chem 281:16193–16196
CrossRef
Google scholar
|
[30] |
Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy . FEBS Lett 584:1374–1378
CrossRef
Google scholar
|
[31] |
Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S
CrossRef
Google scholar
|
[32] |
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T
CrossRef
Google scholar
|
[33] |
LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin . Nat Med 11:1214–1221
CrossRef
Google scholar
|
[34] |
LaVoie MJ, Cortese GP, Ostaszewski BL, Schlossmacher MG (2007) The effects of oxidative stress on parkin and other E3 ligases . J Neurochem 103:2354–2368
CrossRef
Google scholar
|
[35] |
Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ (2013) PINK1 drives Parkin self-association and HECT-like E3 activity upstreamof mitochondrial binding. J CellBiol 200:163–172
CrossRef
Google scholar
|
[36] |
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang CX, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) Theubiquitin kinase PINK1recruits autophagy receptorstoinduce mitophagy . Nature 524:309–314
CrossRef
Google scholar
|
[37] |
Lee JT, Wheeler TC, Li L, Chin LS (2008) Ubiquitination of alphasynuclein by Siah-1 promotes alpha-synuclein aggregation and apoptotic cell death . Hum Mol Genet 17:906–917
CrossRef
Google scholar
|
[38] |
Lee J, Kim HR, Quinley C, Kim J, Gonzalez-Navajas J, Xavier R, Raz E(2012) Autophagy suppresses interleukin-1beta (IL-1beta) signaling by activation of p62 degradation via lysosomal and proteasomal pathways . J Biol Chem 287:4033–4040
CrossRef
Google scholar
|
[39] |
Lesage S, Brice A(2009) Parkinson’sdisease: from monogenic forms to genetic susceptibility factors . Hum Mol Genet 18:R48–R59
CrossRef
Google scholar
|
[40] |
Li H, Guo M (2009) Protein degradation in Parkinson disease revisited: it’s complex . J Clin Investig 119:442–445
CrossRef
Google scholar
|
[41] |
Li J, Qi W, Chen G, Feng D, Liu JH, Ma B, Zhou CQ, Mu CL, Zhang WL, Chen Q
CrossRef
Google scholar
|
[42] |
Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, Mayer RJ (1988) Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease . J Pathol 155:9–15
CrossRef
Google scholar
|
[43] |
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F
CrossRef
Google scholar
|
[44] |
Nakaso K, Yoshimoto Y, Nakano T, Takeshima T, Fukuhara Y, Yasui K, Araga S, Yanagawa T, Ishii T, Nakashima K (2004) Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson’s disease . Brain Res1012–42–51
CrossRef
Google scholar
|
[45] |
Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkinis recruited selectively to impaired mitochondria and promotes their autophagy . J Cell Biol 183:795–803
CrossRef
Google scholar
|
[46] |
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregatesby autophagy . J Biol Chem 282:24131–24145
CrossRef
Google scholar
|
[47] |
Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies . J Biol Chem 285:5941–5953
CrossRef
Google scholar
|
[48] |
Perez FA, Palmiter RD (2005) Parkin-deficient mice are not a robust model of parkinsonism . Proc Natl Acad Sci USA 102:2174–2179
CrossRef
Google scholar
|
[49] |
Perez FA, Curtis WR, Palmiter RD (2005) Parkin-deficient mice are not more sensitive to 6-hydroxydopamine or methamphetamine neurotoxicity . BMC neuroscience 6:71
CrossRef
Google scholar
|
[50] |
Pickrell AM, Youle RJ (2015) The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease . Neuron 85:257–273
CrossRef
Google scholar
|
[51] |
Rott R, Szargel R, Haskin J, Shani V, Shainskaya A, Manov I, Liani E, Avraham E, Engelender S(2008) Monoubiquitylationof alphasynuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells . J Biol Chem 283:3316–3328
CrossRef
Google scholar
|
[52] |
Rubino E, Rainero I, Chio A, Rogaeva E, Galimberti D, Fenoglio P, Grinberg Y, Isaia G, Calvo A, Gentile S
CrossRef
Google scholar
|
[53] |
Rue L, Lopez-Soop G, Gelpi E, Martinez-Vicente M, Alberch J, Perez-Navarro E (2013) Brain region-and age-dependent dysregulation of p62 and NBR1 in a mouse model of Huntington’s disease . Neurobiol Dis 52:219–228
CrossRef
Google scholar
|
[54] |
Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization . Nature496 : 372–376
CrossRef
Google scholar
|
[55] |
Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation . Mol Cell Biol 24:8055–8068
CrossRef
Google scholar
|
[56] |
Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM (2011) PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease . Cell 144:689–702
CrossRef
Google scholar
|
[57] |
Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R
CrossRef
Google scholar
|
[58] |
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies . Nature 388:839–840
CrossRef
Google scholar
|
[59] |
Sriram SR, Li X, Ko HS, Chung KK, Wong E, Lim KL, Dawson VL, Dawson TM (2005) Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin . Hum Mol Genet 14:2571–2586
CrossRef
Google scholar
|
[60] |
Sterky FH, Lee S, Wibom R, Olson L, Larsson NG (2011) Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo . Proc Natl Acad Sci USA 108:12937–12942
CrossRef
Google scholar
|
[61] |
Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin . J Cell Biol 191:1367–1380
CrossRef
Google scholar
|
[62] |
Thomas, B., and Beal, M.F. (2007). Parkinson’s disease . Human molecular genetics 16 Spec No. 2, R183–194
CrossRef
Google scholar
|
[63] |
Van Laar VS, Arnold B, Cassady SJ, Chu CT, Burton EA, Berman SB (2011) Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization . Hum Mol Genet 20:927–940
CrossRef
Google scholar
|
[64] |
Wang H, Song P, Du L, Tian W, Yue W, Liu M, Li D, Wang B, Zhu Y, Cao C
CrossRef
Google scholar
|
[65] |
Wang XN, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL (2011b) PINK1 and Parkin target miro for phosphorylation and degradation to arrest mitochondrial motility . Cell 147:893–906
CrossRef
Google scholar
|
[66] |
Wooten MW, Geetha T, Babu JR, Seibenhener ML, Peng J, Cox N, Diaz-Meco MT, Moscat J (2008) Essential role of sequestosome 1/p62 in regulating accumulation ofLys63-ubiquitinated proteins . J Biol Chem 283:6783–6789
CrossRef
Google scholar
|
[67] |
Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H(2002) p62Isa common component of cytoplasmic inclusions in protein aggregation diseases . Am J Pathol 160:255–263
CrossRef
Google scholar
|
/
〈 | 〉 |