To be EndMT or not to be, that is the question in pulmonary hypertension
Jianhua Xiong
To be EndMT or not to be, that is the question in pulmonary hypertension
[1] |
Arciniegas E, Neves CY, Carrillo LM, Zambrano EA, Ramirez R (2005) Endothelial-mesenchymal transition occurs during embryonic pulmonary artery development. Endothelium 12: 193-200
CrossRef
Google scholar
|
[2] |
Arciniegas E, Frid MG, Douglas IS, Stenmark KR (2007) Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293: L1-L8
CrossRef
Google scholar
|
[3] |
Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR, Trembath RC, Morrell NW (2002) Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105: 1672-1678
CrossRef
Google scholar
|
[4] |
Austin ED, Loyd JE (2014) The genetics of pulmonary arterial hypertension. Circ Res 115: 189-202
CrossRef
Google scholar
|
[5] |
Budhiraja R, Tuder RM, Hassoun PM (2004) Endothelial dysfunction in pulmonary hypertension. Circulation 109: 159-165
CrossRef
Google scholar
|
[6] |
Burton VJ, Ciuclan LI, Holmes AM, Rodman DM, Walker C, Budd DC (2011) Bone morphogenetic protein receptor II regulates pulmonary artery endothelial cell barrier function. Blood 117: 333-341
CrossRef
Google scholar
|
[7] |
Choi SH, Hong ZY, Nam JK, Jang J, Lee HJ, Yoo RJ, Lee YJ, Park S, Ji YH, Lee YS
CrossRef
Google scholar
|
[8] |
Dudek SM, Garcia JG (2001) Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91(1985): 1487-1500
|
[9] |
Good RB, Gilbane AJ, Trinder SL, Denton CP, Coghlan G, Abraham DJ, Holmes AM (2015) Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary artery hypertension. Am J Pathol
CrossRef
Google scholar
|
[10] |
Hashimoto N, Phan SH, Imaizumi K, Matsuo M, Nakashima H, Kawabe T, Shimokata K, Hasegawa Y (2010) Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 43: 161-172
CrossRef
Google scholar
|
[11] |
International PPHC, Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd, Loyd JE, Nichols WC, Trembath RC (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 26: 81-84
CrossRef
Google scholar
|
[12] |
Li Z, Wermuth PJ, Benn BS, Lisanti MP, Jimenez SA (2013) Caveolin-1 deficiency induces spontaneous endothelial-to-mesenchymal transition in murine pulmonary endothelial cells in vitro. Am J Pathol 182: 325-331
CrossRef
Google scholar
|
[13] |
Lin F, Wang N, Zhang TC (2012) The role of endothelial-mesenchymal transition in development and pathological process. IUBMB Life 64: 717-723
CrossRef
Google scholar
|
[14] |
Mehari A, Valle O, Gillum RF (2014) Trends in pulmonary hypertension mortality and morbidity. Pulm Med 2014: 105864
CrossRef
Google scholar
|
[15] |
Qiao L, Nishimura T, Shi L, Sessions D, Thrasher A, Trudell JR, Berry GJ, Pearl RG, Kao PN (2014) Endothelial fate mapping in mice with pulmonary hypertension. Circulation 129: 692-703
CrossRef
Google scholar
|
[16] |
Ranchoux B, Antigny F, Rucker-Martin C, Hautefort A, Pechoux C, Bogaard HJ, Dorfmuller P, Remy S, Lecerf F, Plante S
CrossRef
Google scholar
|
[17] |
Reynolds AM, Holmes MD, Danilov SM, Reynolds PN (2012) Targeted gene delivery of BMPR2 attenuates pulmonary hypertension. Eur Respir J 39: 329-343
CrossRef
Google scholar
|
[18] |
Rieder F, Kessler SP, West GA, Bhilocha S, de la Motte C, Sadler TM, Gopalan B, Stylianou E, Fiocchi C (2011) Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol 179: 2660-2673
CrossRef
Google scholar
|
[19] |
Rockey DC, Bell PD, Hill JA (2015) Fibrosis—a common pathway to organ injury and failure. N Engl J Med 372: 1138-1149
CrossRef
Google scholar
|
[20] |
Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F (2011) Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol 8: 443-455
CrossRef
Google scholar
|
[21] |
Schultze AE, Roth RA (1993) Fibrinolytic activity in blood and lungs of rats treated with monocrotaline pyrrole. Toxicol Appl Pharmacol 121: 129-137
CrossRef
Google scholar
|
[22] |
Schultze AE, Emeis JJ, Roth RA (1996) Cellular fibronectin and von Willebrand factor concentrations in plasma of rats treated with monocrotaline pyrrole. Biochem Pharmacol 51: 187-191
CrossRef
Google scholar
|
[23] |
Smith P, Heath D (1979) Electron microscopy of the plexiform lesion. Thorax 34: 177-186
CrossRef
Google scholar
|
[24] |
Tozzi CA, Christiansen DL, Poiani GJ, Riley DJ (1994) Excess collagen in hypertensive pulmonary arteries decreases vascular distensibility. Am J Respir Crit Care Med 149: 1317-1326
CrossRef
Google scholar
|
[25] |
van Meeteren LA, ten Dijke P (2012) Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res 347: 177-186
CrossRef
Google scholar
|
[26] |
Weibel ER (2012) Fifty years of Weibel-Palade bodies: the discovery and early history of an enigmatic organelle of endothelial cells. J Thromb Haemost 10: 979-984
CrossRef
Google scholar
|
[27] |
Yu W, Liu Z, An S, Zhao J, Xiao L, Gou Y, Lin Y, Wang J (2014) The endothelial-mesenchymal transition (EndMT) and tissue regeneration. Curr Stem Cell Res Ther 9: 196-204
CrossRef
Google scholar
|
[28] |
Zhu P, Huang L, Ge X, Yan F, Wu R, Ao Q (2006) Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. Int J Exp Pathol 87: 463-474
CrossRef
Google scholar
|
/
〈 | 〉 |