Eliminate mitochondrial diseases by gene editing in germ-line cells and embryos

Si Wang, Fei Yi, Jing Qu

PDF(554 KB)
PDF(554 KB)
Protein Cell ›› 2015, Vol. 6 ›› Issue (7) : 472-475. DOI: 10.1007/s13238-015-0177-x
RESEARCH HIGHLIGHT
RESEARCH HIGHLIGHT

Eliminate mitochondrial diseases by gene editing in germ-line cells and embryos

Author information +
History +

Abstract

Nuclease-based gene editing technologies have opened up opportunities for correcting human genetic diseases. For the first time, scientists achieved targeted gene editing of mitochondrial DNA in mouse oocytes fused with patient cells. This fascinating progression may encourage the development of novel therapy for human maternally inherent mitochondrial diseases.

Cite this article

Download citation ▾
Si Wang, Fei Yi, Jing Qu. Eliminate mitochondrial diseases by gene editing in germ-line cells and embryos. Protein Cell, 2015, 6(7): 472‒475 https://doi.org/10.1007/s13238-015-0177-x

References

[1]
Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res24: 372-375<DOI OutputMedium="All">10.1038/c<?Pub Caret?>r.2014.11</DOI>
[2]
Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J (2014) RNAdirected gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A111: 11461-11466
CrossRef Google scholar
[3]
Li M, Suzuki K, Qu J, Saini P, Dubova I, Yi F, Lee J, Sancho-Martinez I, Liu GH, Izpisua Belmonte JC (2011) Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res21: 1740-1744
CrossRef Google scholar
[4]
Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell6: 363-372
CrossRef Google scholar
[5]
Liu GH, Suzuki K, Qu J, Sancho-Martinez I, Yi F, Li M, Kumar S, Nivet E, Kim J, Soligalla RD (2011) Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell8: 688-694
CrossRef Google scholar
[6]
Liu GH, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang W (2012) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature491: 603-607
CrossRef Google scholar
[7]
Liu GH, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, Gu Y, Yi F, Xu X, Zhang W (2014) Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun5: 4330
CrossRef Google scholar
[8]
Mandal PK, Ferreira LM, Collins R, Meissner TB, Boutwell CL, Friesen M, Vrbanac V, Garrison BS, Stortchevoi A, Bryder D (2014) Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell15: 643-652
CrossRef Google scholar
[9]
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell156: 836-843
CrossRef Google scholar
[10]
Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA (2015) Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun6: 6244
CrossRef Google scholar
[11]
Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, Zimmer M, Kahler DJ, Goland RS, Noggle SA (2013) Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature493: 632-637
CrossRef Google scholar
[12]
Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, Sugawara A, Okamura D, Tsunekawa Y, Wu J (2015) Selective elimination of mitochondrial mutations in the germline by genome editing. Cell161: 459-469
CrossRef Google scholar
[13]
Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C, Wang Y, Brodsky RA, Zhang K, Cheng L (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell15: 12-13
CrossRef Google scholar
[14]
Suzuki K, Yu C, Qu J, Li M, Yao X, Yuan T, Goebl A, Tang S, Ren R, Aizawa E (2014) Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell15: 31-36
CrossRef Google scholar
[15]
Tachibana M, Amato P, Sparman M, Woodward J, Sanchis DM, Ma H, Gutierrez NM, Tippner-Hedges R, Kang E, Lee HS (2013) Towards germline gene therapy of inherited mitochondrial diseases. Nature493: 627-631
CrossRef Google scholar
[16]
Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet6: 389-402
CrossRef Google scholar
[17]
Veres A, Gosis BS, Ding Q, Collins R, Ragavendran A, Brand H, Erdin S, Cowan CA, Talkowski ME, Musunuru K (2014) Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by wholegenome sequencing. Cell Stem Cell15: 27-30
CrossRef Google scholar
[18]
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell153: 910-918
CrossRef Google scholar
[19]
Wang T, Sha H, Ji D, Zhang HL, Chen D, Cao Y, Zhu J (2014) Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell157: 1591-1604
CrossRef Google scholar
[20]
Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW (2014) Seamless gene correction of beta-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res24: 1526-1533
CrossRef Google scholar
[21]
Xu X, Qu J, Suzuki K, Li M, Zhang W, Liu GH, Izpisua Belmonte JC (2012) Reprogramming based gene therapy for inherited red blood cell disorders. Cell Res22: 941-944
CrossRef Google scholar
[22]
Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC (2013) Mitochondrial regulation in pluripotent stem cells. Cell Metab18: 325-332
CrossRef Google scholar
[23]
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell154: 1370-1379
CrossRef Google scholar
[24]
Yang L, Grishin D, Wang G, Aach J, Zhang CZ, Chari R, Homsy J, Cai X, Zhao Y, Fan JB (2014) Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nat Commun5: 5507
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(554 KB)

Accesses

Citations

Detail

Sections
Recommended

/