hCLP46 increases Smad3 protein stability via inhibiting its ubiquitin-proteasomal degradation

Yingying Xing, Qiaoyun Chu, Run Feng, Wei Wang, Lixin Liu, Zhongbing Lu

PDF(652 KB)
PDF(652 KB)
Protein Cell ›› 2015, Vol. 6 ›› Issue (10) : 767-770. DOI: 10.1007/s13238-015-0174-0
LETTER
LETTER

hCLP46 increases Smad3 protein stability via inhibiting its ubiquitin-proteasomal degradation

Author information +
History +

Cite this article

Download citation ▾
Yingying Xing, Qiaoyun Chu, Run Feng, Wei Wang, Lixin Liu, Zhongbing Lu. hCLP46 increases Smad3 protein stability via inhibiting its ubiquitin-proteasomal degradation. Protein Cell, 2015, 6(10): 767‒770 https://doi.org/10.1007/s13238-015-0174-0

References

[1]
Acar M, Jafar-Nejad H, Takeuchi H, Rajan A, Ibrani D, Rana NA, Pan H, Haltiwanger RS, Bellen HJ (2008) Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell 132: 247−258
CrossRef Google scholar
[2]
Chu Q, Liu L, Wang W (2013) Overexpression of hCLP46 enhances Notch activation and regulates cell proliferation in a cell typedependent manner. Cell Prolif 46: 254−262
CrossRef Google scholar
[3]
Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF (1999) Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol 19: 2495−2504
[4]
Fernandez-Valdivia R, Takeuchi H, Samarghandi A, Lopez M, Leonardi J, Haltiwanger RS, Jafar-Nejad H (2011) Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development 138: 1925−1934
CrossRef Google scholar
[5]
Guo X, Ramirez A, Waddell DS, Li Z, Liu X, Wang XF (2008) Axin and GSK3- control Smad3 protein stability and modulate TGFsignaling. Genes Dev 22: 106−120
CrossRef Google scholar
[6]
Inoue Y, Kitagawa M, Onozaki K, Hayashi H (2004) Contribution of the constitutive and inducible degradation of Smad3 by the ubiquitin-proteasome pathway to transforming growth factor-beta signaling. J Interferon Cytokine Res 24: 43−54
CrossRef Google scholar
[7]
Ma W, Du J, Chu Q, Wang Y, Liu L, Song M, Wang W(2011) hCLP46 regulates U937 cell proliferation via Notch signaling pathway. Biochem Biophys Res Commun 408: 84−88
CrossRef Google scholar
[8]
Teng Y, Liu Q, Ma J, Liu F, Han Z, Wang Y, Wang W (2006) Cloning, expression and characterization of a novel human CAP10-like gene hCLP46 from CD34(+) stem/progenitor cells. Gene 371: 7−15
CrossRef Google scholar
[9]
Wang Y, Chang N, Zhang T, Liu H, Ma W, Chu Q, Lai Q, Liu L, Wang W (2010) Overexpression of human CAP10-like protein 46 KD in T-acute lymphoblastic leukemia and acute myelogenous leukemia. Genet Test Mol Biomark 14: 127−133
CrossRef Google scholar
[10]
Wildey GM, Patil S, Howe PH (2003) Smad3 potentiates transforming growth factor beta (TGFbeta)-induced apoptosis and expression of the BH3-only protein Bim in WEHI 231 B lymphocytes. J Biol Chem 278: 18069−18077
CrossRef Google scholar
[11]
Xin H, Xu X, Li L, Ning H, Rong Y, Shang Y, Wang Y, Fu XY, Chang Z (2005) CHIP controls the sensitivity of transforming growth factorbeta signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation. J Biol Chem 280: 20842−20850
CrossRef Google scholar
[12]
Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng C (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 18: 1280−1291
CrossRef Google scholar
[13]
Zhang J, Zhang X, Xie F, Zhang Z, van Dam H, Zhang L, Zhou F (2014) The regulation of TGF-beta/SMAD signaling by protein deubiquitination. Protein Cell 5: 503−517
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(652 KB)

Accesses

Citations

Detail

Sections
Recommended

/