hCLP46 increases Smad3 protein stability via inhibiting its ubiquitin-proteasomal degradation
Yingying Xing, Qiaoyun Chu, Run Feng, Wei Wang, Lixin Liu, Zhongbing Lu
hCLP46 increases Smad3 protein stability via inhibiting its ubiquitin-proteasomal degradation
[1] |
Acar M, Jafar-Nejad H, Takeuchi H, Rajan A, Ibrani D, Rana NA, Pan H, Haltiwanger RS, Bellen HJ (2008) Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell 132: 247−258
CrossRef
Google scholar
|
[2] |
Chu Q, Liu L, Wang W (2013) Overexpression of hCLP46 enhances Notch activation and regulates cell proliferation in a cell typedependent manner. Cell Prolif 46: 254−262
CrossRef
Google scholar
|
[3] |
Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF (1999) Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol 19: 2495−2504
|
[4] |
Fernandez-Valdivia R, Takeuchi H, Samarghandi A, Lopez M, Leonardi J, Haltiwanger RS, Jafar-Nejad H (2011) Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development 138: 1925−1934
CrossRef
Google scholar
|
[5] |
Guo X, Ramirez A, Waddell DS, Li Z, Liu X, Wang XF (2008) Axin and GSK3- control Smad3 protein stability and modulate TGFsignaling. Genes Dev 22: 106−120
CrossRef
Google scholar
|
[6] |
Inoue Y, Kitagawa M, Onozaki K, Hayashi H (2004) Contribution of the constitutive and inducible degradation of Smad3 by the ubiquitin-proteasome pathway to transforming growth factor-beta signaling. J Interferon Cytokine Res 24: 43−54
CrossRef
Google scholar
|
[7] |
Ma W, Du J, Chu Q, Wang Y, Liu L, Song M, Wang W(2011) hCLP46 regulates U937 cell proliferation via Notch signaling pathway. Biochem Biophys Res Commun 408: 84−88
CrossRef
Google scholar
|
[8] |
Teng Y, Liu Q, Ma J, Liu F, Han Z, Wang Y, Wang W (2006) Cloning, expression and characterization of a novel human CAP10-like gene hCLP46 from CD34(+) stem/progenitor cells. Gene 371: 7−15
CrossRef
Google scholar
|
[9] |
Wang Y, Chang N, Zhang T, Liu H, Ma W, Chu Q, Lai Q, Liu L, Wang W (2010) Overexpression of human CAP10-like protein 46 KD in T-acute lymphoblastic leukemia and acute myelogenous leukemia. Genet Test Mol Biomark 14: 127−133
CrossRef
Google scholar
|
[10] |
Wildey GM, Patil S, Howe PH (2003) Smad3 potentiates transforming growth factor beta (TGFbeta)-induced apoptosis and expression of the BH3-only protein Bim in WEHI 231 B lymphocytes. J Biol Chem 278: 18069−18077
CrossRef
Google scholar
|
[11] |
Xin H, Xu X, Li L, Ning H, Rong Y, Shang Y, Wang Y, Fu XY, Chang Z (2005) CHIP controls the sensitivity of transforming growth factorbeta signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation. J Biol Chem 280: 20842−20850
CrossRef
Google scholar
|
[12] |
Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng C (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 18: 1280−1291
CrossRef
Google scholar
|
[13] |
Zhang J, Zhang X, Xie F, Zhang Z, van Dam H, Zhang L, Zhou F (2014) The regulation of TGF-beta/SMAD signaling by protein deubiquitination. Protein Cell 5: 503−517
CrossRef
Google scholar
|
/
〈 | 〉 |