LSY-2 is essential for maintaining the germ-soma distinction in C. elegans
Long Lin, Yuping Li, Libo Yan, Gangming Zhang, Yu Zhao, Hong Zhang
LSY-2 is essential for maintaining the germ-soma distinction in C. elegans
The mechanisms that specify and maintain the characteristics of germ cells during animal development are poorly understood. In this study, we demonstrated that loss of function of the zinc-finger gene lsy-2 results in various somatic cells adopting germ cells characteristics, including expression of germline-specific P granules, enhanced RNAi activity and transgene silencing. The soma to germ transformation in lsy-2 mutants requires the activities of multiple chromatin remodeling complexes, including the MES-4 complex and the ISW-1 complex. The distinct germline-specific features in somatic cells and the gene expression profile indicate that LSY-2 acts in the Mec complex in this process. Our study demonstrated that lsy-2 functions in the maintenance of the soma-germ distinction.
P granules / soma / lsy-2 / C. elegans
[1] |
Broday L, Kolotuev I, Didier C, Bhoumik A, Gupta BP, Sternberg PW, Podbilewicz B, Ronai Z (2004) The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. Genes Dev 18: 2380-2391
CrossRef
Google scholar
|
[2] |
Cai Y, Jin J, Tomomori-Sato C, Sato S, Sorokina I, Parmely TJ, Conaway RC, Conaway JW (2003) Identification of new subunits of the multiprotein mammalian TRRAP/TIP60-containing histone acetyltransferase complex. J Biol Chem 278: 42733-42736
CrossRef
Google scholar
|
[3] |
Cardoso C, Couillault C, Mignon-Ravix C, Millet A, Ewbank JJ, Fontes M, Pujol N (2005) XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans. Dev Biol 278: 49-59
CrossRef
Google scholar
|
[4] |
Chesney MA, Kidd AR 3rd, Kimble J (2006) gon-14 functions with class B and class C synthetic multivulva genes to control larval growth in Caenorhabditis elegans. Genetics 172: 915-928
CrossRef
Google scholar
|
[5] |
Cui M, Fay DS, Han M (2004) lin-35/Rb cooperates with the SWI/ SNF complex to control Caenorhabditis elegans larval development. Genetics 167: 1177-1185
CrossRef
Google scholar
|
[6] |
Cui M, Kim EB, Han M (2006) Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C. elegans. PLoS Genet 2(5): e74
CrossRef
Google scholar
|
[7] |
Doyon Y, Selleck W, Lane WS, Tan S, Cote J (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24: 1884-1896
CrossRef
Google scholar
|
[8] |
Draper BW, Mello CC, Bowerman B, Hardin J, Priess JR (1996) MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 87: 205-216
CrossRef
Google scholar
|
[9] |
Fay DS, Yochem J (2007) The SynMuv genes of Caenorhabditis elegans in vulval development and beyond. Dev. Biol 306: 1-9
CrossRef
Google scholar
|
[10] |
Fay DS, Large E, Han M, Darland M (2003) lin-35/Rb and ubc-18, an E2 ubiquitin-conjugating enzyme, function redundantly to control pharyngeal morphogenesis in C. elegans. Development 130: 3319-3330
CrossRef
Google scholar
|
[11] |
Fay DS, Qiu X, Large E, Smith CP, Mango S, Johanson BL (2004) The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb, pha-1, and ubc-18. Dev Biol 271: 11-25
CrossRef
Google scholar
|
[12] |
Gruidl ME, Smith PA, Kuznicki KA, McCrone JS, Kirchner J, Roussell DL, Strome S, Benneth KL (1996) Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. PNAS 93: 13837-13842
CrossRef
Google scholar
|
[13] |
Guedes S, Priess JR (1997) The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. Development 124: 731-739
|
[14] |
Hird SN, Paulsen JE, Strome S (1996) Segregation of germ granules in living Caenorhabditis elegans embryos: cell type-specific mechanisms for cytoplasmic localisation. Development 122: 1303-1312
|
[15] |
Johnston RJ Jr, Hobert O (2005) A novel C. elegans zinc finger transcription factor, lsy-2, required for the cell type-specific expression of the lsy-6 microRNA. Development 132: 5451-5460
CrossRef
Google scholar
|
[16] |
Kaczynski J, Cook T, Urrutia R (2003) Sp1- and Kruppel-like transcription factors. Genome Biol 4: 206
CrossRef
Google scholar
|
[17] |
Kawasaki I, Shim YH, Kirchner J, Kaminker J, Wood WB, Strome S (1998) PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94: 635-645
CrossRef
Google scholar
|
[18] |
Kunert N, Wagner E, Murawska M, Klinker H, Kremmer E, Brehm A (2009) dMec: a novel Mi-2 chromatin remodelling complex involved in transcriptional repression. Embo J 28: 533-544
CrossRef
Google scholar
|
[19] |
Kuznicki KA, Smith PA, Leung-Chiu WM, Estevez AO, Scott HC, Benneth KL (2000) Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans. Development 127: 2907-2916
|
[20] |
Leight ER, Glossip D, Kornfeld K (2005) Sumoylation of LIN-1 promotes transcriptional repression and inhibition of vulval cell fates. Development 132: 1047-1056
CrossRef
Google scholar
|
[21] |
Mello CC, Schubert C, Draper B, Zhang W, Lobel R, Priess JR (1996) The PIE-1 protein and germline specification in C. elegans embryos. Nature 382: 710-712
CrossRef
Google scholar
|
[22] |
Ortiz CO, Faumont S, Takayama J, Ahmed HK, Goldsmith AD, Pocock R, McCormick KE, Kunimoto H, Iino Y, Lockery S, Hobert O (2009) Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases. Curr Biol 19: 996-1004
CrossRef
Google scholar
|
[23] |
Poole RJ, Bashllari E, Cochella L, Flowers EB, Hobert O (2011) A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans. PLoS Genet 7(6): e1002109
CrossRef
Google scholar
|
[24] |
Poulin G, Dong Y, Fraser AG, Hopper NA, Ahringer J (2005) Chromatin regulation and sumoylation in the inhibition of Rasinduced vulval development in Caenorhabditis elegans. EMBO J 24: 2613-2623
CrossRef
Google scholar
|
[25] |
Robert VJ, Sijen T, van Wolfswinkel J, Plasterk RH (2005) Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences. Genes Dev 19: 782-787
CrossRef
Google scholar
|
[26] |
Sarin S, O’Meara MM, Flowers EB, Antonio C, Poole RJ, Didiano D, Johnston RJ Jr, Chang S, Narula S, Hobert O (2007) Genetic screens for Caenorhabditis elegans mutants defective in left/right asymmetric neuronal fate specification. Genetics 176: 2109-2130
CrossRef
Google scholar
|
[27] |
Sijen T, Plasterk RH (2003) Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426: 310-314
CrossRef
Google scholar
|
[28] |
Stielow B, Sapetschnig A, Kruger I, Kunert N, Brehm A, Boutros M, Suske G (2008) Identification of SUMO-dependent chromatinassociated transcriptional repression components by a genomewide RNAi screen. Mol Cell 29: 742-754
CrossRef
Google scholar
|
[29] |
Strome S (2005) Specification of the germ line. WormBook 28: 1-10
CrossRef
Google scholar
|
[30] |
Tabara H, Hill RJ, Mello CC, Priess JR, Kohara Y (1999) pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans. Development 126: 1-11
|
[31] |
Unhavaithaya Y, Shin TH, Miliaras N, Lee J, Oyama T, Mello CC (2002) MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline-soma distinctions in C. elegans. Cell 111: 991-1002
CrossRef
Google scholar
|
[32] |
Wang D, Kennedy S, Conte D Jr, Kim JK, Gabel HW, Kamath RS, Mello CC, Ruvkun G (2005) Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436: 593-597
CrossRef
Google scholar
|
[33] |
Wu X, Shi Z, Cui M, Han M, Ruvkun G (2012) Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes. PLoS Genet 8(3): e1002542
CrossRef
Google scholar
|
[34] |
Zhang YX, Yan LB, Zhou Z, Yang PG, Tian E, Zhang K, Zhao Y, Li ZP, Song B, Han JH
CrossRef
Google scholar
|
/
〈 | 〉 |