Structural basis of PKM2 regulation

Weiwei Yang

PDF(71 KB)
PDF(71 KB)
Protein Cell ›› 2015, Vol. 6 ›› Issue (4) : 238-240. DOI: 10.1007/s13238-015-0146-4
HIGHLIGHT
HIGHLIGHT

Structural basis of PKM2 regulation

Author information +
History +

Cite this article

Download citation ▾
Weiwei Yang. Structural basis of PKM2 regulation. Protein Cell, 2015, 6(4): 238‒240 https://doi.org/10.1007/s13238-015-0146-4

References

[1]
Altenberg B, Greulich KO (2004) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics84: 1014-1020
CrossRef Google scholar
[2]
Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol8: 839-847
CrossRef Google scholar
[3]
Chaneton B, Gottlieb E (2012) Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem Sci37: 309-316
CrossRef Google scholar
[4]
Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature452: 230-233
CrossRef Google scholar
[5]
Corcoran E, Phelan JJ, Fottrell PF (1976) Purification and properties of pyruvate kinase from human lung. Biochim Biophys Acta446: 96-104
CrossRef Google scholar
[6]
Dombrauckas JD, Santarsiero BD, Mesecar AD (2005) Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry44: 9417-9429
CrossRef Google scholar
[7]
Gao X, Wang H, Yang JJ, Liu X, Liu ZR (2012) Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell45: 598-609
CrossRef Google scholar
[8]
Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer4: 891-899
CrossRef Google scholar
[9]
Gui DY, Lewis CA, Vander Heiden MG (2013) Allosteric regulation of PKM2 allows cellular adaptation to different physiological states. Sci Signal6: pe7
CrossRef Google scholar
[10]
Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Science Signaling2: ra73
CrossRef Google scholar
[11]
Iqbal MA, Siddiqui FA, Chaman N, Gupta V, Kumar B, Gopinath P, Bamezai RN (2014) Missense mutations in pyruvate kinase M2 promote cancer metabolism, oxidative endurance, anchorage independence, and tumor growth in a dominant negative manner. J Biol Chem289: 8098-8105
CrossRef Google scholar
[12]
Kim JW, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res66: 8927-8930
CrossRef Google scholar
[13]
Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y (2011) Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell42: 719-730
CrossRef Google scholar
[14]
Morgan HP, McNae IW, Nowicki MW, Hannaert V, Michels PA, Fothergill-Gilmore LA, Walkinshaw MD (2010) Allosteric mechanism of pyruvate kinase from Leishmania mexicana uses a rock and lock model. J Biol Chem285: 12892-12898
CrossRef Google scholar
[15]
Morgan HP, O’Reilly FJ, Wear MA, O’Neill JR, Fothergill-Gilmore LA, Hupp T, Walkinshaw MD (2013) M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proc Natl Acad Sci USA: 5881-5886
CrossRef Google scholar
[16]
Noguchi T, Yamada K, Inoue H, Matsuda T, Tanaka T (1987) The Land R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem262: 14366-14371
[17]
Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324: 1029-1033
CrossRef Google scholar
[18]
Wang P, Sun C, Zhu T, Xu Y (2015) Structural insight into mechanisms for dynamic regulation of PKM2. Protein Cell.
CrossRef Google scholar
[19]
Warburg O (1956) On the origin of cancer cells. Science123: 309-314
CrossRef Google scholar
[20]
Yang W, Lu Z (2013) Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett339: 153-158
CrossRef Google scholar
[21]
Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z (2011) Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature480: 118-122
CrossRef Google scholar
[22]
Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L, You MJ, Koh MY, Cote G, Aldape K (2012a) EGFR-induced and PKCepsilon monoubiquitylation- dependent NF-kappaB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell48: 771-784
CrossRef Google scholar
[23]
Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z (2012b) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell150: 685-696
CrossRef Google scholar
[24]
Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z (2012c) ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol14: 1295-1304
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(71 KB)

Accesses

Citations

Detail

Sections
Recommended

/