Cholesterol metabolism and homeostasis in the brain
Juan Zhang, Qiang Liu
Cholesterol metabolism and homeostasis in the brain
Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to bloodbrain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.
cholesterol metabolism / homeostasis / apoE
[1] |
Andersson M, Elmberger PG, Edlund C, Kristensson K, Dallner G (1990) Rates of cholesterol, ubiquinone, dolichol and dolichyl-P biosynthesis in rat brain slices. FEBS Lett269: 15-18
CrossRef
Google scholar
|
[2] |
Baudry M, Yao Y, Simmons D, Liu J, Bi X (2003) Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microglia and astroglia. Exp Neurol184: 887-903
CrossRef
Google scholar
|
[3] |
Berg JM (2002) The complex regulation of cholesterol biosynthesis takes place at several levels. Biochemistry, 5th edn. W.H. Freeman, New York
|
[4] |
Björkhem I (2006) Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med260: 493-508
CrossRef
Google scholar
|
[5] |
Björkhem I, Meaney S, Fogelman AM (2004) Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol24: 806-815
CrossRef
Google scholar
|
[6] |
Björkhem I, Heverin M, Leoni V, Meaney S, Dicz-falusy U (2006) Oxysterols and Alzheimer’s disease. Acta Neurol Scand114: 43-49
CrossRef
Google scholar
|
[7] |
Block RC, Dorsey ER, Beck CA, Brenna JT, Shoulson I (2010) Altered cholesterol and fatty acid metabolism in Huntington disease. J Clin Lipidol4: 17-23
CrossRef
Google scholar
|
[8] |
Boyles JK, Notterpek LM, Anderson LJ (1990) Accumulation of apolipoproteins in the regenerating and remyelinating mammalian peripheral nerve. Identification of apolipoprotein D, apolipoprotein A-IV, apolipoprotein E, and apolipoprotein A-I. J Biol Chem265: 17805-17815
|
[9] |
Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci96: 11041-11048
CrossRef
Google scholar
|
[10] |
Bryleva EY, Rogers MA, Chang CC, Buen F, Harris BT, Rousselet E
CrossRef
Google scholar
|
[11] |
Cahoy JD
CrossRef
Google scholar
|
[12] |
Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C
CrossRef
Google scholar
|
[13] |
Christopherson KS
CrossRef
Google scholar
|
[14] |
Corder EH, Saunders AM, Strittmatter WJ
CrossRef
Google scholar
|
[15] |
Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA101: 2070-2075
CrossRef
Google scholar
|
[16] |
De Chaves EI, Rusinol AE, Vance DE, Campenot RB, Vance JE (1997) Role of lipoproteins in the delivery of lipids to axons during axonal regeneration. J Biol Chem272: 30766-30773
CrossRef
Google scholar
|
[17] |
Dean M, Hamon Y, Chimini G (2001) The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res42: 1007-1017
CrossRef
Google scholar
|
[18] |
DeBose-Boyd RA, Brown MS, Li WP, Nohturfft A, Goldstein JL, Espenshade PJ (1999) Transport-dependent proteolysis of SREBP: relocation of Site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell99: 703-712
CrossRef
Google scholar
|
[19] |
DeGrella RF, Simoni RD (1982) Intracellular transport of cholesterol to the plasma membrane. J Biol Chem257: 14256-14262
|
[20] |
Di Paolo G, Kim TW (2011) Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci12: 284-296
CrossRef
Google scholar
|
[21] |
Dietschy JM, Turley SD (2004) Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res45: 1375-1397
CrossRef
Google scholar
|
[22] |
Elrick MJ, Pacheco CD, Yu T, Dadgar N, Shakkottai VG, Ware C
CrossRef
Google scholar
|
[23] |
Fagan AM, Holtzman DM (2000) Astrocyte lipoproteins, effects of apoE on neuronal function, and role of apoE in amyloid-beta deposition in vivo. Microsc Res Tech50: 297-304
CrossRef
Google scholar
|
[24] |
Fagan AM, Bu G, Sun Y, Daugherty A, Holtzman DM (1996) Apolipoprotein E-containing high density lipoprotein promotes neurite outgrowth and is a ligand for the low density lipoprotein receptor-related protein. J Biol Chem271: 30121-30125
CrossRef
Google scholar
|
[25] |
Fester L, Zhou L, Bütow A (2009) Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus. Hippocampus19: 692-705
CrossRef
Google scholar
|
[26] |
Fox MA, Umemori H (2006) Seeking long-term relationship: axon and target communicate to organize synaptic differentiation. J Neurochem97: 1215-1231
CrossRef
Google scholar
|
[27] |
Fukumoto H, Deng A, Irizarry MC, Fitzgerald ML, Rebeck GW (2002) Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver x receptor agonists increases secreted abeta levels. J Biol Chem277: 48508-48513
CrossRef
Google scholar
|
[28] |
Fünfschilling U, Saher G, Xiao L, Möbius W, Nave KA (2007) Survival of adult neurons lacking cholesterol synthesis in vivo. BMC Neurosci2: 1-8
CrossRef
Google scholar
|
[29] |
Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M
CrossRef
Google scholar
|
[30] |
German DC, Liang CL, Song T, Yazdani U, Xie C, Dietschy JM (2002) Neurodegeneration in the Niemann-Pick C mouse: glial involvement. Neuroscience109: 437-450
CrossRef
Google scholar
|
[31] |
Goritz C, Mauch DH, Pfrieger FW (2005) Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci29: 190-201
CrossRef
Google scholar
|
[32] |
Gosselet F, Candela P, Sevin E, Berezowski V, Cecchelli R, Fenart L (2009) Transcriptional profiles of receptors and transporters involved in brain cholesterol homeostasis at the blood-brain barrier: use of an in vitro model. Brain Res1249: 34-42
CrossRef
Google scholar
|
[33] |
Han X, Cheng H, Fryer JD, Fagan AM, Holtzman DM (2003) Novel role for apolipoprotein E in the central nervous system. Modulation of sulfatide content. J Biol Chem278: 8043-8051
CrossRef
Google scholar
|
[34] |
Heino S, Lusa S, Somerharju P, Ehnholm C, Olkkonen VM, Ikonen E (2000) Dissecting the role of the Golgi complex and lipid rafts in biosynthetic transport of cholesterol to the cell surface. Proc Natl Acad Sci97: 8375-8380
CrossRef
Google scholar
|
[35] |
Herz J (2009) Apolipoprotein E receptors in the nervous system”. Curr Opin Lipidol20: 190-196
CrossRef
Google scholar
|
[36] |
Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA, Chan JY
CrossRef
Google scholar
|
[37] |
Hirsch-Reinshagen V, Maia LF, Burgess BL
CrossRef
Google scholar
|
[38] |
Hu CY, Ong WY, Patel SC (2000) Regional distribution of NPC1 protein in monkey brain. J Neurocytol29: 765-773
CrossRef
Google scholar
|
[39] |
Hutter-Paier B, Huttunen HJ, Puglielli L, Eckman CB, Kim DY, Hofmeister A
CrossRef
Google scholar
|
[40] |
Ignatius MJ, Gebicke-Harter PJ, Skene JH, Schilling JW, Weisgrabber KH, Mahley RW, Shooter EM (1986) Expression of apolipoprotein E during nerve degeneration and regeneration. Proc Natl Acad Sci USA83: 1125-1129
CrossRef
Google scholar
|
[41] |
Ignatius MJ, Shooter EM, Pitas RE, Mahley RW (1987) Lipoprotein uptake by neuronal growth cones in vitro. Science236: 950-962
CrossRef
Google scholar
|
[42] |
Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol9: 125-138
CrossRef
Google scholar
|
[43] |
Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf DJ (1999) Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci96: 266-271
CrossRef
Google scholar
|
[44] |
Jansen PJ, Lutjohann D, Thelen KM, von Bergmann K, van Leuven F, Ramaekers FC
|
[45] |
Jeske DJ, Dietschy JM (1980) Regulation of rates of cholesterol synthesis in vivo in the liver and carcass of the rat measured using [3H] water. J. Lipid Res21: 364-376
|
[46] |
Jurevics H, Morell P (1995) Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem64: 895-901
CrossRef
Google scholar
|
[47] |
Jurevics HA, Kidwai FZ, Morell P (1997) Sources of cholesterol during development of the rat fetus and fetal organs. J Lipid Res38: 723-733
|
[48] |
Kaplan MR, Simoni RD (1985) Transport of cholesterol from the endoplasmic reticulum to the plasma membrane. J Cell Biol101: 446-453
CrossRef
Google scholar
|
[49] |
Karten B, Campenot RB, Vance DE, Vance JE (2006) Expression of ABCG1, but not ABCA1, correlates with cholesterol release by cerebellar astroglia. J Biol Chem281: 4049-4057
CrossRef
Google scholar
|
[50] |
Kim WS, Weickert CS, Garner B (2008) Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem104: 1145-1166
CrossRef
Google scholar
|
[51] |
Ko M, Zou K, Minagawa H
CrossRef
Google scholar
|
[52] |
Koch S, Donarski N, Goetze K, Kreckel M, Stuerenburg HJ, Buhmann C
|
[53] |
Koldamova RP, Lefterov IM, Ikonomovic MD, Skoko J, Lefterov PI, Isanski BA
CrossRef
Google scholar
|
[54] |
Korade Z, Kenworthy AK (2008) Lipid rafts, cholesterol, and the brain. Neuropharmacology55: 1265-1273
CrossRef
Google scholar
|
[55] |
Lahiri DK (2004) ApolipoproteinEasatargetfordevelopingnew therapeutics for Alzheimer’s disease based on studies from protein, the gene. J Mol Neurosci23: 225-233
CrossRef
Google scholar
|
[56] |
Lange Y, Ye J, Strebel F (1995) Movement of 25-hydroxycholesterol from the plasma membrane to the rough endoplasmic reticulum in cul- tured hepatoma cells. J Lipid Res36: 1092-1097
|
[57] |
Levi O, Lutjohann D, Devir A, von Bergmann K, Hartmann T, Michaelson DM (2005) Regulation of hippocampal cholesterol metabolism by apoE and environmental stimulation. J Neurochem95: 987-997
CrossRef
Google scholar
|
[58] |
Li Y, Lu W, Marzolo MP, Bu G (2001) Differential functions of members of the low density lipoprotein receptor family suggested by their distinct endocytosis rates. J Biol Chem276: 18000-18006
CrossRef
Google scholar
|
[59] |
Liang Y, Lin S, Beyer TP, Zhang Y, Wu X, Bales KR, DeMattos RB, May PC, Li SD, Jiang XC, Eacho PI, Cao G, Paul SM (2004) A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression secretion and cholesterol homeostasis in astrocyte. J NeuroChem88: 623-634
CrossRef
Google scholar
|
[60] |
Linetti A, Fratangeli A, Taverna E, Valnegri P, Francolini M, Cappello V
CrossRef
Google scholar
|
[61] |
Linton MF, Gish R, Hubl ST
CrossRef
Google scholar
|
[62] |
Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL
CrossRef
Google scholar
|
[63] |
Liu B, Turley SD, Burns DK, Miller AM, Repa JJ, Dietschy JM (2009) Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc Natl Acad Sci106: 2377-2382
CrossRef
Google scholar
|
[64] |
Liu Q, Trotter J, Zhang J, Peters MM, Cheng H, Bao J
CrossRef
Google scholar
|
[65] |
Lomnitski L, Oron L, Sklan D, Michaelson DM (1999) Distinct alterations in phospholipid metabolism in brains of apolipoprotein E-deficient mice. J Neurosci Res58: 586-592
CrossRef
Google scholar
|
[66] |
Lopez ME, Klein AD, Dimbil UJ, Scott MP (2011) Anatomically defined neuron-based rescue of neurodegenerative Niemann-Pick type C disorder. J Neurosci31: 4367-4378
CrossRef
Google scholar
|
[67] |
Lund EG, Guileyardo JM, Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci USA96(13): 7238-7243
CrossRef
Google scholar
|
[68] |
Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, Russell DW (2003) Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem25: 22980-22988
CrossRef
Google scholar
|
[69] |
Lütjohann D, Breuer O, Ahlborg G, Nennesmo I, Sidén A, Diczfalusy U, Björkhem I (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA93: 9799-9804
CrossRef
Google scholar
|
[70] |
Madra M, Sturley SL(2010) Niemann-Pick type C pathogenesis and treatment: from statins to sugars. Clin Lipidol5: 387-395
CrossRef
Google scholar
|
[71] |
Mahley RW, Weisgraber KH, Huang Y (2006) Apolipopro- tein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci USA103: 5644-5651
CrossRef
Google scholar
|
[72] |
Marquer C, Devauges V, Cossec JC, Liot G, Lecart S, Saudou F, Duyckaerts C, Leveque-Fort S, Potier MC (2011) Local cholesterol increase triggers amyloid precursor protein-BACE1 clustering in lipid rafts and rapid endocytosis. FASEB J25: 1295-1305
CrossRef
Google scholar
|
[73] |
Matsuda A, Nagao K, Matsuo M, Kioka N, Ueda K (2013) 24(S)- hydroxycholesterol is actively eliminated from neuronal cells by ABCA1. J Neurochem126: 93-101
CrossRef
Google scholar
|
[74] |
Mauch DH
CrossRef
Google scholar
|
[75] |
Meaney S, Bodin K, Diczfalusy U, Bjorkhem I (2002) On the rate of translocation in vitro and kinetics in vivo of the major oxysterols in human circulation: critical importance of the position of the oxygen function. J Lipid Res43: 2130-2135
CrossRef
Google scholar
|
[76] |
Minagawa H, Gong JS, Jung CG, Watanabe A, Lund-Katz S, Phillips MC
CrossRef
Google scholar
|
[77] |
Morell P, Jurevics H (1996) Origin of cholesterol in myelin. Neurochemical Research21: 463-470
CrossRef
Google scholar
|
[78] |
Naureckiene S, Sleat D, Lackland H, Fensom A, Vanier MT, Wattiaux R
CrossRef
Google scholar
|
[79] |
Nieweg K, Schaller H, Pfrieger FW (2009) Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem109: 125-134
CrossRef
Google scholar
|
[80] |
Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ (2000) Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell102: 315-323
CrossRef
Google scholar
|
[81] |
Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol25: 237-258
|
[82] |
Ollila S, Hyvönen MT, Vattulainen I (2007) Polyunsatu- ration in lipid membranes: dynamic properties and lateral pressure profiles. J Phys Chem B111: 3139-3150
CrossRef
Google scholar
|
[83] |
Ong WY, Sundaram RK, Huang E, Ghoshal S, Kumar U, Pentchev PG
CrossRef
Google scholar
|
[84] |
Oram JF, Heinecke JW (2005) ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev85: 1343-1372
CrossRef
Google scholar
|
[85] |
Panzenboeck U, Balazs Z, Sovic A, Hrzenjak A, Levak-Frank S, Wintersperger A
CrossRef
Google scholar
|
[86] |
Patel SC, Suresh S, Kumar U, Hu CY, Cooney A, Blanchette-Mackie EJ
CrossRef
Google scholar
|
[87] |
Pfenninger KH (2009) Plasma membrane expansion: a neuron’s Herculean task. Nat Rev Neurosci10: 251-261
CrossRef
Google scholar
|
[88] |
Pfrieger FW, Barres BA (1997) Synaptic efficacy enhanced by glial cells in vitro. Science277: 1684-1687
CrossRef
Google scholar
|
[89] |
Pfrieger FW, Ungerer N (2011) Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res50: 357-371
CrossRef
Google scholar
|
[90] |
Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N (1992) Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA89: 4471-4475
CrossRef
Google scholar
|
[91] |
Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH (1987a) Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B, E(LDL) receptors in the brain. J Biol Chem262: 14352-14360
|
[92] |
Pitas RE, Boyles JK, Lee SH (1987b) Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E- containing lipoproteins. Biochimi et Biophys Acta917: 148-161
CrossRef
Google scholar
|
[93] |
Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG
CrossRef
Google scholar
|
[94] |
Pooler AM, Xi SC, Wurtman RJ (2006) The 3- hydroxy-3-methylglutaryl co-enzyme A reductase inhibitor pravastatin enhances neurite outgrowth in hippocampal neurons. J Neurochem97: 716-723
CrossRef
Google scholar
|
[95] |
Pottier C, Hannequin D, Coutant S
CrossRef
Google scholar
|
[96] |
Prasad A, Fischer WA, Maue RA, Henderson LP (2000) Regional and developmental expression of the Npc1 mRNA in the mouse brain. J Neurochem75: 1250-1257
CrossRef
Google scholar
|
[97] |
Puglielli L, Tanzi RE, Kovacs DM (2003) Alzheimer’s disease: the cholesterol connection. Nat Neurosci6: 345-351
CrossRef
Google scholar
|
[98] |
Quan G, Xie C, Dietschy JM, Turley SD (2003) Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. Brain Res Dev Brain Res146: 87-98
CrossRef
Google scholar
|
[99] |
Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL (2007) Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci104: 6511-6518
CrossRef
Google scholar
|
[100] |
Ramirez DM, Andersson S, Russell DW (2008) Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J Comp Neurol507: 1676-1693
CrossRef
Google scholar
|
[101] |
Rebeck GW (2004) Cholesterol efflux as a critical component of Alzheimer’s disease pathogenesis. J Mol Neurosci23: 219-224
CrossRef
Google scholar
|
[102] |
Rebeck GW, Reiter JS, Strickland DK, Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron11: 575-580
CrossRef
Google scholar
|
[103] |
Reid PC, Sakashita N, Sugii S, Ohno-Iwashita Y, Shimada Y, Hickey WF
CrossRef
Google scholar
|
[104] |
Roheim PS, Carey M, Forte T, Vega GL (1979) Apolipoproteins in human cerebrospinal fluid. Proc Natl Acad Sci USA76: 646-649
CrossRef
Google scholar
|
[105] |
Saher G, Brügger B, Lappe-Siefke C
CrossRef
Google scholar
|
[106] |
Saito K, Dubreuil V, Arai Y, Wilsch-Brauninger M, Schwudke D, Saher G
CrossRef
Google scholar
|
[107] |
Sakashita N, Miyazaki A, Takeya M, Horiuchi S, Chang CC, Chang TY
CrossRef
Google scholar
|
[108] |
Schmechel DE, Saunders AM, Strittmatter WJ
CrossRef
Google scholar
|
[109] |
Schmitz G, Kaminski WE, Orso E (2000) ABC transporters in cellular lipid trafficking. Curr Opin Lipidol11: 493-501
CrossRef
Google scholar
|
[110] |
Snipes GJ, McGuire CB, Norden JJ, Freeman JA (1986) Nerve injury stimulates the secretion of apolipoprotein E by nonneuronal cells. Proc Natl Acad Sci USA83: 1130-1134
CrossRef
Google scholar
|
[111] |
Soccio RE, Breslow JL (2004) Intracellular cholesterol transport. Arterioscler Thromb Vasc Biol24: 1150-1160
CrossRef
Google scholar
|
[112] |
Storch J, Xu Z (2009) Niemann-Pick C2 (NPC2) and intracellular cholesterol trafficking. Biochim Biophys Acta1791: 671-678
CrossRef
Google scholar
|
[113] |
Tachikawa M, Watanabe M, Hori S, Fukaya M, Ohtsuki S, Asashima T, Terasaki T (2005) Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. J Neurochem95: 294-304
CrossRef
Google scholar
|
[114] |
Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D
CrossRef
Google scholar
|
[115] |
Tall AR (2008) Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med263: 256-273
CrossRef
Google scholar
|
[116] |
Tarr PT, Edwards PA (2008) ABCG1 and ABCG4 are coexpressed in neurons and astrocytes of the CNS and regulate cholesterol homeostasis through SREBP-2. J Lipid Res49: 169-182
CrossRef
Google scholar
|
[117] |
Thelen KM, Falkai P, Bayer TA, Lütjohann D (2006) Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci Lett403: 15-19
CrossRef
Google scholar
|
[118] |
Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science291: 657-661
CrossRef
Google scholar
|
[119] |
Valdez CM, Smith MA, Perry G, Phelix CF, Santamaria F (2010) Cholesterol homeostasismarkers are localized tomouse hippocampal pyramidal and granule layers. Hippocampus20: 902-905
|
[120] |
Vance JE, Pan D, Campenot RB, Bussiere M, Vance DE (1994) Evidence that the major membrane lipids, except cholesterol, are made in axons of cultured rat sympathetic neurons. J Neurochem62: 329-337
CrossRef
Google scholar
|
[121] |
Vaughan AM, Oram JF (2006) ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol- rich HDL. J Lipid Res47: 2433-2443
CrossRef
Google scholar
|
[122] |
Wahrle SE, Jiang H, Parsadanian M
CrossRef
Google scholar
|
[123] |
Wang Q, Yan J, Chen X, Li J, Yang Y, Weng J
CrossRef
Google scholar
|
[124] |
Wellington CL, Walker EK, Suarez A, Kwok A, Bissada N, Singaraja R
CrossRef
Google scholar
|
[125] |
Wollmer MA, Streffer JR, Tsolaki M, Grimaldi LM, Lutjohann D, Thal D
CrossRef
Google scholar
|
[126] |
Wollmer MA, Streffer JR, Lutjohann D, Tsolaki M, Iakovidou V, Hegi T
CrossRef
Google scholar
|
[127] |
Wustner D, Mondal M, Tabas I, Maxfield FR (2005) Direct observation of rapid internalization and intracellular transport of sterol by macrophage foam cells. Traffic6: 396-412
CrossRef
Google scholar
|
[128] |
Xiong H, Callaghan D, Jones A, Walker DG, Lue LF, Beach TG, Sue LI, Woulfe J, Xu H, Stanimirovic DB
CrossRef
Google scholar
|
[129] |
Xu PT, Gilbert JR, Qiu HL, Ervin J, Rothrock-Christian TR, Hulette C, Schmechel DE (1999) Specificregional transcription of apolipoprotein E in human brain neurons. Am J Pathol154: 601-611
CrossRef
Google scholar
|
[130] |
Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/ sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem276: 33540-33546
CrossRef
Google scholar
|
/
〈 | 〉 |