Revisiting the TALE repeat

Dong Deng, Chuangye Yan, Jianping Wu, Xiaojing Pan, Nieng Yan

PDF(2467 KB)
PDF(2467 KB)
Protein Cell ›› 2014, Vol. 5 ›› Issue (4) : 297-306. DOI: 10.1007/s13238-014-0035-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Revisiting the TALE repeat

Author information +
History +

Abstract

Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33–35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

Keywords

TAL effectors / DNA / recognition / plasticity

Cite this article

Download citation ▾
Dong Deng, Chuangye Yan, Jianping Wu, Xiaojing Pan, Nieng Yan. Revisiting the TALE repeat. Protein Cell, 2014, 5(4): 297‒306 https://doi.org/10.1007/s13238-014-0035-2

References

[1]
Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr58: 1948-1954
[2]
Bai J, Choi SH, Ponciano G, Leung H, Leach JE (2000) Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol Plant Microbe Interact13: 1322-1329
CrossRef Google scholar
[3]
Beumer KJ, Trautman JK, Christian M, Dahlem TJ, Lake CM, Hawley RS, Grunwald DJ, Voytas DF, Carroll D (2013) Comparing ZFNs and TALENs for gene targeting in Drosophila. G3 (Bethesda)3(10): 1717-1725
[4]
Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol48: 419-436
CrossRef Google scholar
[5]
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science326: 1509-1512
CrossRef Google scholar
[6]
Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science333: 1843-1846
CrossRef Google scholar
[7]
Bonas U, Conrads-Strauch J, Balbo I (1993) Resistance in tomato to Xanthomonas campestris pv vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol Gen Genet238: 261-269
[8]
Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CBA, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA109(43): 17382-17387
CrossRef Google scholar
[9]
Christian M, Qi Y, Zhang Y, Voytas DF (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases (TALENs). G3( Bethesda)3(10): 1697-1705
[10]
Das AK, Cohen PW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPRmediated protein-protein interactions. EMBO J17: 1192-1199
CrossRef Google scholar
[11]
Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N (2012a) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science335: 720-723
CrossRef Google scholar
[12]
Deng D, Yin P, Yan C, Pan X, Gong X, Qi S, Xie T, Mahfouz M, Zhu JK, Yan N (2012b) Recognition of methylated DNA by TAL effectors. Cell Res22: 1502-1504
CrossRef Google scholar
[13]
Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ (2013) TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol23(8): 390-398
CrossRef Google scholar
[14]
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr60: 2126-2132
[15]
Gao H, Wu X, Chai J, Han Z (2012) Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res22: 1716-1720
CrossRef Google scholar
[16]
Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang GL, White FF (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature435: 1122-1125
CrossRef Google scholar
[17]
Heigwer F, Kerr G, Walther N, Glaeser K, Pelz O, Breinig M, Boutros M (2013) E-TALEN: a web tool to design TALENs for genome engineering. Nucleic Acids Res41(20): e190
CrossRef Google scholar
[18]
Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol29: 699-700
CrossRef Google scholar
[19]
Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol31: 251-258
CrossRef Google scholar
[20]
Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA108: 2623-2628
CrossRef Google scholar
[21]
Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science335: 716-719
CrossRef Google scholar
[22]
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr40: 658-674
CrossRef Google scholar
[23]
McMahon MA, Rahdar M, Porteus M (2012) Gene editing: not just for translation anymore. Nat Methods9: 28-31
CrossRef Google scholar
[24]
Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science326: 1501
CrossRef Google scholar
[25]
Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol276: 307-326
CrossRef Google scholar
[26]
Panda SK, Wefers B, Ortiz O, Floss T, Schmid B, Haass C, Wurst W, Kuhn R (2013) Highly efficient targeted mutagenesis in mice using TALENs. Genetics195(3): 703-713
CrossRef Google scholar
[27]
Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science252: 809-817
CrossRef Google scholar
[28]
Schrodinger LLC (2010) The PyMOL molecular graphics system, Version 1.3r1
[29]
Streubel J, Blucher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol30: 593-595
CrossRef Google scholar
[30]
Swarup S, Yang Y, Kingsley MT, Gabriel DW (1992) An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol Plant Microbe Interact5: 204-213
CrossRef Google scholar
[31]
White FF, Yang B (2009) Host and pathogen factors controlling the rice–Xanthomonas oryzae interaction. Plant Physiol150: 1677-1686
CrossRef Google scholar
[32]
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr67: 235-242
CrossRef Google scholar
[33]
Yang J, Zhang Y, Yuan P, Zhou Y, Cai C, Ren Q, Wen D, Chu C, Qi H, Wei W (2014) Complete decoding of TAL effectors for DNA recognition. Cell Res.
CrossRef Google scholar
[34]
Yin P, Deng D, Yan C, Pan X, Xi JJ, Yan N, Shi Y (2012) Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep2: 707-713
CrossRef Google scholar
[35]
Yin P, Li Q, Yan C, Liu Y, Liu J, Yu F, Wang Z, Long J, He J, Wang H-W, Wang J, Zhu J-K, Shi Y, Yan N (2013) Structural basis for the modular recognition of single stranded RNA by PPR proteins. Nature504: 168-171
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(2467 KB)

Accesses

Citations

Detail

Sections
Recommended

/