Revisiting the TALE repeat
Dong Deng, Chuangye Yan, Jianping Wu, Xiaojing Pan, Nieng Yan
Revisiting the TALE repeat
Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33–35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.
TAL effectors / DNA / recognition / plasticity
[1] |
Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr58: 1948-1954
|
[2] |
Bai J, Choi SH, Ponciano G, Leung H, Leach JE (2000) Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol Plant Microbe Interact13: 1322-1329
CrossRef
Google scholar
|
[3] |
Beumer KJ, Trautman JK, Christian M, Dahlem TJ, Lake CM, Hawley RS, Grunwald DJ, Voytas DF, Carroll D (2013) Comparing ZFNs and TALENs for gene targeting in Drosophila. G3 (Bethesda)3(10): 1717-1725
|
[4] |
Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol48: 419-436
CrossRef
Google scholar
|
[5] |
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science326: 1509-1512
CrossRef
Google scholar
|
[6] |
Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science333: 1843-1846
CrossRef
Google scholar
|
[7] |
Bonas U, Conrads-Strauch J, Balbo I (1993) Resistance in tomato to Xanthomonas campestris pv vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol Gen Genet238: 261-269
|
[8] |
Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CBA, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA109(43): 17382-17387
CrossRef
Google scholar
|
[9] |
Christian M, Qi Y, Zhang Y, Voytas DF (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases (TALENs). G3( Bethesda)3(10): 1697-1705
|
[10] |
Das AK, Cohen PW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPRmediated protein-protein interactions. EMBO J17: 1192-1199
CrossRef
Google scholar
|
[11] |
Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N (2012a) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science335: 720-723
CrossRef
Google scholar
|
[12] |
Deng D, Yin P, Yan C, Pan X, Gong X, Qi S, Xie T, Mahfouz M, Zhu JK, Yan N
CrossRef
Google scholar
|
[13] |
Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ (2013) TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol23(8): 390-398
CrossRef
Google scholar
|
[14] |
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr60: 2126-2132
|
[15] |
Gao H, Wu X, Chai J, Han Z (2012) Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res22: 1716-1720
CrossRef
Google scholar
|
[16] |
Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang GL, White FF
CrossRef
Google scholar
|
[17] |
Heigwer F, Kerr G, Walther N, Glaeser K, Pelz O, Breinig M, Boutros M (2013) E-TALEN: a web tool to design TALENs for genome engineering. Nucleic Acids Res41(20): e190
CrossRef
Google scholar
|
[18] |
Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol29: 699-700
CrossRef
Google scholar
|
[19] |
Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E
CrossRef
Google scholar
|
[20] |
Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA108: 2623-2628
CrossRef
Google scholar
|
[21] |
Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science335: 716-719
CrossRef
Google scholar
|
[22] |
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr40: 658-674
CrossRef
Google scholar
|
[23] |
McMahon MA, Rahdar M, Porteus M (2012) Gene editing: not just for translation anymore. Nat Methods9: 28-31
CrossRef
Google scholar
|
[24] |
Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science326: 1501
CrossRef
Google scholar
|
[25] |
Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol276: 307-326
CrossRef
Google scholar
|
[26] |
Panda SK, Wefers B, Ortiz O, Floss T, Schmid B, Haass C, Wurst W, Kuhn R (2013) Highly efficient targeted mutagenesis in mice using TALENs. Genetics195(3): 703-713
CrossRef
Google scholar
|
[27] |
Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science252: 809-817
CrossRef
Google scholar
|
[28] |
Schrodinger LLC (2010) The PyMOL molecular graphics system, Version 1.3r1
|
[29] |
Streubel J, Blucher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol30: 593-595
CrossRef
Google scholar
|
[30] |
Swarup S, Yang Y, Kingsley MT, Gabriel DW (1992) An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol Plant Microbe Interact5: 204-213
CrossRef
Google scholar
|
[31] |
White FF, Yang B (2009) Host and pathogen factors controlling the rice–Xanthomonas oryzae interaction. Plant Physiol150: 1677-1686
CrossRef
Google scholar
|
[32] |
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A
CrossRef
Google scholar
|
[33] |
Yang J, Zhang Y, Yuan P, Zhou Y, Cai C, Ren Q, Wen D, Chu C, Qi H, Wei W (2014) Complete decoding of TAL effectors for DNA recognition. Cell Res.
CrossRef
Google scholar
|
[34] |
Yin P, Deng D, Yan C, Pan X, Xi JJ, Yan N, Shi Y (2012) Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep2: 707-713
CrossRef
Google scholar
|
[35] |
Yin P, Li Q, Yan C, Liu Y, Liu J, Yu F, Wang Z, Long J, He J, Wang H-W, Wang J, Zhu J-K, Shi Y, Yan N (2013) Structural basis for the modular recognition of single stranded RNA by PPR proteins. Nature504: 168-171
CrossRef
Google scholar
|
/
〈 | 〉 |