Matricellular proteins: multifaceted extracellular regulators in tumor dormancy
Tiantian Wu, Gaoliang Ouyang
Matricellular proteins: multifaceted extracellular regulators in tumor dormancy
[1] |
Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer7: 834-846
CrossRef
Google scholar
|
[2] |
Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M, Shao R, Anderson RM, Rich JN, Wang XF (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell5: 329-339
CrossRef
Google scholar
|
[3] |
Bornstein P (1995) Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol130: 503-506
CrossRef
Google scholar
|
[4] |
Boyerinas B, Zafrir M, Yesilkanal AE, Price TT, Hyjek EM, Sipkins DA (2013) Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood121: 4821-4831
CrossRef
Google scholar
|
[5] |
Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M
CrossRef
Google scholar
|
[6] |
Chiodoni C, Colombo MP, Sangaletti S (2010) Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev29: 295-307
CrossRef
Google scholar
|
[7] |
Conway SJ, Izuhara K, Kudo Y, Litvin J, Markwald R, Ouyang G, Arron JR, Holweg CT, Kudo A (2014) The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci
CrossRef
Google scholar
|
[8] |
Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DY
CrossRef
Google scholar
|
[9] |
Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell155: 750-764
CrossRef
Google scholar
|
[10] |
Hensel JA, FlaigT W, Theodorescu D(2013) Clinical opportunities and challenges in targeting tumour dormancy. Nat Rev Clin Oncol10: 41-51
CrossRef
Google scholar
|
[11] |
Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD (2009) Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer9: 182-194
CrossRef
Google scholar
|
[12] |
Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov10: 945-963
CrossRef
Google scholar
|
[13] |
Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N, Kudo A (2010) Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem285: 2028-2039
CrossRef
Google scholar
|
[14] |
Kudo A (2011) Periostin in flbrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cell Mol Life Sci68: 3201-3207
CrossRef
Google scholar
|
[15] |
Liu AY, Ouyang G (2013) Tumor angiogenesis: a new source of pericytes. Curr Biol23: R565-R568
CrossRef
Google scholar
|
[16] |
Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature481: 85-89
CrossRef
Google scholar
|
[17] |
Maruhashi T, Kii I, Saito M, Kudo A (2010) Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem285: 13294-13303
CrossRef
Google scholar
|
[18] |
Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S, Toda S, Inagaki N, Kurihara Y, Hayashida S
CrossRef
Google scholar
|
[19] |
Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood106: 1232-1239
CrossRef
Google scholar
|
[20] |
Norris RA, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, Trusk T, Potts JD, Goodwin RL, Davis J
CrossRef
Google scholar
|
[21] |
Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massagué J (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med17: 867-874
CrossRef
Google scholar
|
[22] |
Ouyang G, Wang Z, Fang X, Liu J, Yang CJ (2010) Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cell Mol Life Sci67: 2605-2618
CrossRef
Google scholar
|
[23] |
Rivera LB, Bradshaw AD, Brekken RA (2011) The regulatory function of SPARC in vascular biology. Cell Mol Life Sci68: 3165-3173
CrossRef
Google scholar
|
[24] |
Ruan K, Bao S, Ouyang G (2009) The multifaceted role of periostin in tumorigenesis. Cell Mol Life Sci66: 2219-2230
CrossRef
Google scholar
|
[25] |
Shao R, Bao S, Bai X, Blanchette C, Anderson RM, Dang T, Gishizky ML, Marks JR, Wang XF (2004) Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol24: 3992-4003
CrossRef
Google scholar
|
[26] |
Song G, Ouyang G, Mao Y, Ming Y, Bao S, Hu T (2009) Osteopontin promotes gastric cancer metastasis by augmenting cell survival and invasion through Akt-mediated HIF-1α up-regulation and MMP9 activation. J Cell Mol Med13: 1706-1718
CrossRef
Google scholar
|
[27] |
Tanabe H, Takayama I, Nishiyama T, Shimazaki M, Kii I, Li M, Amizuka N, Katsube K, Kudo A (2010) Periostin associates with Notch1 precursor to maintain Notch1 expression under a stress condition in mouse cells. PLoS One5: e12234
CrossRef
Google scholar
|
[28] |
Wan L, Pantel K, Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nat Med19: 1450-1464
CrossRef
Google scholar
|
[29] |
Wang Z, Ouyang G (2012) Periostin: a bridge between cancer stem cells and their metastatic niche. Cell Stem Cell10: 111-112
CrossRef
Google scholar
|
[30] |
Wang X, Liu J, Wang Z, Huang Y, Liu W, Zhu X, Cai Y, Fang X, Lin S, Yuan L
CrossRef
Google scholar
|
/
〈 | 〉 |