New insights into the regulation of Axin function in canonical Wnt signaling pathway
Xiaomin Song, Sheng Wang, Lin Li
New insights into the regulation of Axin function in canonical Wnt signaling pathway
The Wnt signaling pathway plays crucial roles during embryonic development, whose aberration is implicated in a variety of human cancers. Axin, a key component of canonical Wnt pathway, plays dual roles in modulating Wnt signaling: on one hand, Axin scaffolds the “β-catenin destruction complex” to promote β-catenin degradation and therefore inhibits the Wnt signal transduction; on the other hand, Axin interacts with LRP5/6 and facilitates the recruitment of GSK3 to the plasma membrane to promote LRP5/6 phosphorylation and Wnt signaling. The differential assemblies of Axin with these two distinct complexes have to be tightly controlled for appropriate transduction of the “on” or “off” Wnt signal. So far, there are multiple mechanisms revealed in the regulation of Axin activity, such as post-transcriptional modulation, homo/hetero-polymerization and auto-inhibition. These mechanisms may work cooperatively to modulate the function of Axin, thereby playing an important role in controlling the canonical Wnt signaling. In this review, we will focus on the recent progresses regarding the regulation of Axin function in canonical Wnt signaling.
Wnt signaling / Axin / post-transcriptional modification / polymerization / auto-inhibition
[1] |
Bao R, Christova T, Song S, Angers S, Yan X, Attisano L (2012) Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells. PLoS ONE7: e48670
CrossRef
Google scholar
|
[2] |
Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C (2007) Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science316: 1619-1622
CrossRef
Google scholar
|
[3] |
Callow MG, Tran H, Phu L, Lau T, Lee J, Sandoval WN, Liu PS, Bheddah S, Tao J, Lill JR
CrossRef
Google scholar
|
[4] |
Cha B, Kim W, Kim YK, Hwang BN, Park SY, Yoon JW, Park WS, Cho JW, Bedford MT, Jho EH (2011) Methylation by protein arginine methyltransferase 1 increases stability of Axin, a negative regulator of Wnt signaling. Oncogene30: 2379-2389
CrossRef
Google scholar
|
[5] |
Chan DW, Chan CY, Yam JW, Ching YP, Ng IO (2006) Prickle-1 negatively regulates Wnt/beta-catenin pathway by promoting Dishevelled ubiquitination/degradation in liver cancer. Gastroenterology131: 1218-1227
CrossRef
Google scholar
|
[6] |
Chen G, AJ, Wang M, Farley S, Lee LY, Lee LC, Sawicki MP (2008) Menin promotes the Wnt signaling pathway in pancreatic endocrine cells. Mol Cancer Res6: 1894-1907
|
[7] |
Chen T, Li M, Ding Y, Zhang LS, Xi Y, Pan WJ, Tao DL, Wang JY, Li L (2009) Identification of zinc-finger BED domain-containing 3 (Zbed3) as a novel Axin-interacting protein that activates Wnt/beta-catenin signaling. J Biol Chem284: 6683-6689
CrossRef
Google scholar
|
[8] |
Chia IV, Costantini F (2005) Mouse axin and axin2/conductin proteins are functionally equivalent in vivo. Mol Cell Biol25: 4371-4376
CrossRef
Google scholar
|
[9] |
Choi J, Park SY, Costantini F, Jho EH, Joo CK (2004) Adenomatous polyposis coli is down-regulated by the ubiquitin-proteasome pathway in a process facilitated by Axin. J Biol Chem279: 49188-49198
CrossRef
Google scholar
|
[10] |
Choi SH, Choi KM, Ahn HJ (2010) Coexpression and protein-protein complexing of DIX domains of human Dvl1 and Axin1 protein. BMB Rep43: 609-613
CrossRef
Google scholar
|
[11] |
Ding Y, Xi Y, Chen T, Wang JY, Tao DL, Wu ZL, Li YP, Li C, Zeng R, Li L (2008) Caprin-2 enhances canonical Wnt signaling through regulating LRP5/6 phosphorylation. J Cell Biol182: 865-872
CrossRef
Google scholar
|
[12] |
Ding Y, Zhang Y, Xu C, Tao QH, Chen YG (2013) HECT domaincontaining E3 ubiquitin ligase NEDD4L negatively regulates Wnt signaling by targeting dishevelled for proteasomal degradation. J Biol Chem288: 8289-8298
CrossRef
Google scholar
|
[13] |
Egea V, Zahler S, Rieth N, Neth P, Popp T, Kehe K, Jochum M, Ries C (2012) Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/betacatenin signaling. Proc Natl Acad Sci USA109: E309-E316
CrossRef
Google scholar
|
[14] |
Fang WQ, Ip JP, Li R, Ng YP, Lin SC, Chen Y, Fu AK, Ip NY (2011) Cdk5-mediated phosphorylation of Axin directs axon formation during cerebral cortex development. J Neurosci31: 13613-13624
CrossRef
Google scholar
|
[15] |
Fei C, Li Z, Li C, Chen Y, Chen Z, He X, Mao L, Wang X, Zeng R, Li L (2013) Smurf1-mediated Lys29-linked non-proteolytic poly-ubiquitination of Axin negatively regulates Wnt/beta-catenin signaling. Mol Cell Biol33: 4095-4105
CrossRef
Google scholar
|
[16] |
Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M (2011) Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in downregulating beta-catenin. Proc Natl Acad Sci USA108: 1937-1942
CrossRef
Google scholar
|
[17] |
Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM (2002) Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proc Natl Acad Sci USA99: 1182-1187
CrossRef
Google scholar
|
[18] |
Han Y, Zhang Y, Yang LH, Mi XY, Dai SD, Li QC, Xu HT, Yu JH, Li G, Zhao J
CrossRef
Google scholar
|
[19] |
Hu T, Li C, Cao Z, Van Raay TJ, Smith JG, Willert K, Solnica-Krezel L, Coffey RJ (2010) Myristoylated Naked2 antagonizes Wnt-betacatenin activity by degrading Dishevelled-1 at the plasma membrane. J Biol Chem285: 13561-13568
CrossRef
Google scholar
|
[20] |
Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S
CrossRef
Google scholar
|
[21] |
James RG, Davidson KC, Bosch KA, Biechele TL, Robin NC, Taylor RJ, Major MB, Camp ND, Fowler K, Martins TJ
CrossRef
Google scholar
|
[22] |
Jho E, Lomvardas S, Costantini F (1999) A GSK3beta phosphorylation site in axin modulates interaction with beta-catenin and Tcf-mediated gene expression. Biochem Biophys Res Commun266: 28-35
CrossRef
Google scholar
|
[23] |
Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol22: 1172-1183
CrossRef
Google scholar
|
[24] |
Jiang Y, Luo W, Howe PH (2009) Dab2 stabilizes Axin and attenuates Wnt/beta-catenin signaling by preventing protein phosphatase 1 (PP1)-Axin interactions. Oncogene28: 2999-3007
CrossRef
Google scholar
|
[25] |
Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell120: 635-647
CrossRef
Google scholar
|
[26] |
Kim S, Jho EH (2010) The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2). J Biol Chem285: 36420-36426
CrossRef
Google scholar
|
[27] |
Kim SI, Park CS, Lee MS, Kwon MS, Jho EH, Song WK (2004) Cyclin-dependent kinase 2 regulates the interaction of Axin with beta-catenin. Biochem Biophys Res Commun317: 478-483
CrossRef
Google scholar
|
[28] |
Kim MJ, Chia IV, Costantini F (2008) SUMOylation target sites at the C terminus protect Axin from ubiquitination and confer protein stability. FASEB J22: 3785-3794
CrossRef
Google scholar
|
[29] |
Kim JT, Li J, Jang ER, Gulhati P, Rychahou PG, Napier DL, Wang C, Weiss HL, Lee EY, Anthony L
CrossRef
Google scholar
|
[30] |
Kim SE, Huang H, Zhao M, Zhang X, Zhang A, Semonov MV, MacDonald BT, Zhang X, Garcia Abreu J, Peng L
CrossRef
Google scholar
|
[31] |
Koinuma K, Yamashita Y, Liu W, Hatanaka H, Kurashina K, Wada T, Takada S, Kaneda R, Choi YL, Fujiwara SI
|
[32] |
Kulathu Y, Komander D (2012) Atypical ubiquitylation- the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol13: 508-523
CrossRef
Google scholar
|
[33] |
Lee I, Ajay SS, Yook JI, Kim HS, Hong SH, Kim NH, Dhanasekaran SM, Chinnaiyan AM, Athey BD (2009) New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res19: 1175-1183
CrossRef
Google scholar
|
[34] |
Lee MA, Kim WK, Park HJ, Kang SS, Lee SK (2013) Antiproliferative activity of hydnocarpin, a natural lignan, is associated with the suppression of Wnt/beta-catenin signaling pathway in colon cancer cells. Bioorg Med Chem Lett23: 5511-5514
CrossRef
Google scholar
|
[35] |
Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, Cho KR, Fearon ER (2002) Activation of AXIN2 expression by betacatenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem277: 21657-21665
CrossRef
Google scholar
|
[36] |
Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJ, Maurice MM, Mahmoudi T
CrossRef
Google scholar
|
[37] |
Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X (1999) beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci USA96: 6273-6278
CrossRef
Google scholar
|
[38] |
Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL, White RL, Matsunami N (2001) Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell7: 927-936
CrossRef
Google scholar
|
[39] |
Liu YT, Dan QJ, Wang J, Feng Y, Chen L, Liang J, Li Q, Lin SC, Wang ZX, Wu JW (2011) Molecular basis of Wnt activation via the DIX domain protein Ccd1. J Biol Chem286: 8597-8608
CrossRef
Google scholar
|
[40] |
Lu J, Ma Z, Hsieh JC, Fan CW, Chen B, Longgood JC, Williams NS, Amatruda JF, Lum L, Chen C (2009) Structure-activity relationship studies of small-molecule inhibitors of Wnt response. Bioorg Med Chem Lett19: 3825-3827
CrossRef
Google scholar
|
[41] |
Lui TT, Lacroix C, Ahmed SM, Goldenberg SJ, Leach CA, Daulat AM, Angers S (2011) The ubiquitin-specific protease USP34 regulates axin stability and Wnt/beta-catenin signaling. Mol Cell Biol31: 2053-2065
CrossRef
Google scholar
|
[42] |
Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R, Shabanowitz J, Hunt DF, Yost HJ, Virshup DM (2007) Protein phosphatase 1 regulates assembly and function of the betacatenin degradation complex. EMBO J26: 1511-1521
CrossRef
Google scholar
|
[43] |
Mao J, Wang J, Liu B, Pan W, Farr GH3rd, Flynn C, Yuan H, Takada S, Kimelman D, Li L
CrossRef
Google scholar
|
[44] |
Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science315: 1576-1579
CrossRef
Google scholar
|
[45] |
Mendoza-Topaz C, Mieszczanek J, Bienz M (2011) The Adenomatous polyposis coli tumour suppressor is essential for Axin complex assembly and function and opposes Axin's interaction with Dishevelled. Open Biol1: 110013
CrossRef
Google scholar
|
[46] |
Metcalfe C, Mendoza-Topaz C, Mieszczanek J, Bienz M (2010) Stability elements in the LRP6cytoplasmic tail confer efficient signalling upon DIX-dependent polymerization. J Cell Sci123: 1588-1599
CrossRef
Google scholar
|
[47] |
Miyaki M, Konishi M, Kikuchi-Yanoshita R, Enomoto M, Igari T, Tanaka K, Muraoka M, Takahashi H, Amada Y, Fukayama M
|
[48] |
Najdi R, Holcombe RF, Waterman ML (2011) Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog10: 5
CrossRef
Google scholar
|
[49] |
Nikuseva Martic T, Pecina-Slaus N, Kusec V, Kokotovic T, Musinovic H, Tomas D, Zeljko M (2010) Changes of AXIN-1 and beta-catenin in neuroepithelial brain tumors. Pathol Oncol Res16: 75-79
CrossRef
Google scholar
|
[50] |
Pecina-Slaus N, Martic TN, Kokotovic T, Kusec V, Tomas D, Hrascan R (2011) AXIN-1 protein expression and localization in glioblastoma. Collegium Antropologicum35(Suppl 1): 101-106
|
[51] |
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature403: 901-906
CrossRef
Google scholar
|
[52] |
Rui HL, Fan E, Zhou HM, Xu Z, Zhang Y, Lin SC (2002) SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. J Biol Chem277: 42981-42986
CrossRef
Google scholar
|
[53] |
Sakanaka C, Williams LT (1999) Functional domains of axin. Importance of the C terminus as an oligomerization domain. J Biol Chem274: 14090-14093
CrossRef
Google scholar
|
[54] |
Schmitz Y, Rateitschak K, Wolkenhauer O (2013) Analysing the impact of nucleo-cytoplasmic shuttling of beta-catenin and its antagonists APC, Axin and GSK3 on Wnt/beta-catenin signalling. Cell Signal25: 2210-2221
CrossRef
Google scholar
|
[55] |
Schwarz-Romond T, Fiedler M, Shibata N, Butler PJ, Kikuchi A, Higuchi Y, Bienz M (2007a) The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol14: 484-492
CrossRef
Google scholar
|
[56] |
Schwarz-Romond T, Metcalfe C, Bienz M (2007b) Dynamic recruitment of axin by Dishevelled protein assemblies. J Cell Sci120: 2402-2412
CrossRef
Google scholar
|
[57] |
Shibata N, Tomimoto Y, Hanamura T, Yamamoto R, Ueda M, Ueda Y, Mizuno N, Ogata H, Komori H, Shomura Y
CrossRef
Google scholar
|
[58] |
Shiomi K, Uchida H, Keino-Masu K, Masu M (2003) Ccd1, a novel protein with a DIX domain, is a positive regulator in the Wnt signaling during zebrafish neural patterning. Curr Biol13: 73-77
CrossRef
Google scholar
|
[59] |
Shultz MD, Kirby CA, Stams T, Chin DN, Blank J, Charlat O, Cheng H, Cheung A, Cong F, Feng Y
CrossRef
Google scholar
|
[60] |
Silver SJ, Hagen JW, Okamura K, Perrimon N, Lai EC (2007) Functional screening identifies miR-315 as a potent activator of Wingless signaling. Proc Natl Acad Sci USA104: 18151-18156
CrossRef
Google scholar
|
[61] |
Strovel ET, Wu D, Sussman DJ (2000) Protein phosphatase 2Calpha dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem275: 2399-2403
CrossRef
Google scholar
|
[62] |
Tran H, Polakis P (2012) Reversible modification of adenomatous polyposis coli (APC) with K63-linked polyubiquitin regulates the assembly and activity of the beta-catenin destruction complex. J Biol Chem287: 28552-28563
CrossRef
Google scholar
|
[63] |
Tran H, Bustos D, Yeh R, Rubinfeld B, Lam C, Shriver S, Zilberleyb I, Lee MW, Phu L, Sarkar AA
CrossRef
Google scholar
|
[64] |
Wang S, Yin J, Chen D, Nie F, Song X, Fei C, Miao H, Jing C, Ma W, Wang L
CrossRef
Google scholar
|
[65] |
Wei W, Li M, Wang J, Nie F, Li L (2012) The E3 ubiquitin ligase ITCH negatively regulates canonical Wnt signaling by targeting dishevelled protein. Mol Cell Biol32: 3903-3912
CrossRef
Google scholar
|
[66] |
Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev20: 1394-1404
CrossRef
Google scholar
|
[67] |
Willert K, Shibamoto S, Nusse R (1999) Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev13: 1768-1773
CrossRef
Google scholar
|
[68] |
Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev13: 270-283
CrossRef
Google scholar
|
[69] |
Wong CK, Luo W, Deng Y, Zou H, Ye Z, Lin SC (2004) The DIX domain protein coiled-coil-DIX1 inhibits c-Jun N-terminal kinase activation by Axin and dishevelled through distinct mechanisms. J Biol Chem279: 39366-39373
CrossRef
Google scholar
|
[70] |
Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A (1999) Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem274: 10681-10684
CrossRef
Google scholar
|
[71] |
Yan D, Wiesmann M, Rohan M, Chan V, Jefferson AB, Guo L, Sakamoto D, Caothien RH, Fuller JH, Reinhard C
CrossRef
Google scholar
|
[72] |
Yang LH, Xu HT, Li QC, Jiang GY, Zhang XP, Zhao HY, Xu K, Wang EH (2013) Abnormal hypermethylation and clinicopathological significance of Axin gene in lung cancer. Tumour Biol34: 749-757
CrossRef
Google scholar
|
[73] |
Yokoyama N, Markova NG, Wang HY, Malbon CC (2012) Assembly of Dishevelled 3-based supermolecular complexes via phosphorylation and Axin. J Mol Signal7: 8
CrossRef
Google scholar
|
[74] |
Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A
CrossRef
Google scholar
|
/
〈 | 〉 |