Structure and receptor-binding properties of an airborne transmissible avian influenza A virus hemagglutinin H5 (VN1203mut)

Xishan Lu1,3, Yi Shi2, Wei Zhang3,4, Yanfang Zhang5, Jianxun Qi3, George F. Gao1,2,3,4,5,6()

PDF(836 KB)
PDF(836 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (7) : 502-511. DOI: 10.1007/s13238-013-3906-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Structure and receptor-binding properties of an airborne transmissible avian influenza A virus hemagglutinin H5 (VN1203mut)

  • Xishan Lu1,3, Yi Shi2, Wei Zhang3,4, Yanfang Zhang5, Jianxun Qi3, George F. Gao1,2,3,4,5,6()
Author information +
History +

Abstract

Avian influenza A virus continues to pose a global threat with occasional H5N1 human infections, which is emphasized by a recent severe human infection caused by avian-origin H7N9 in China. Luckily these viruses do not transmit efficiently in human populations. With a few amino acid substitutions of the hemagglutinin H5 protein in the laboratory, two H5 mutants have been shown to obtain an air-borne transmission in a mammalian ferret model. Here in this study one of the mutant H5 proteins developed by Kawaoka’s group (VN1203mut) was expressed in a baculovirus system and its receptor-binding properties were assessed. We herein show that the VN1203mut had a dramatically reduced binding affinity for the avian α2,3- linkage receptor compared to wild type but showed no detectable increase in affinity for the human α2,6-linkage receptor, using Surface Plasmon Resonance techonology. Further, the crystal structures of the VN1203mut and its complexes with either human or avian receptors demonstrate that the VN1203mut binds the human receptor in the same binding manner (cis conformation) as seen for the HAs of previously reported 1957 and 1968 pandemic influenza viruses. Our receptor binding and crystallographic data shown here further confirm that the ability to bind the avian receptor has to decrease for a higher human receptor binding affinity. As the Q226L substitution is shown important for obtaining human receptor binding, we suspect that the newly emerged H7N9 binds human receptor as H7 has a Q226L substitution.

Keywords

airborne / transmission / H5 / avian influenza / structure / receptor binding

Cite this article

Download citation ▾
Xishan Lu, Yi Shi, Wei Zhang, Yanfang Zhang, Jianxun Qi, George F. Gao. Structure and receptor-binding properties of an airborne transmissible avian influenza A virus hemagglutinin H5 (VN1203mut). Prot Cell, 2013, 4(7): 502‒511 https://doi.org/10.1007/s13238-013-3906-z

References

[1] Collaborative Computational Project, N. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50, 760-763 .10.1107/S0907444994003112
[2] Eisen, M.B., Sabesan, S., Skehel, J.J., and Wiley, D.C. (1997). Binding of the influenza A virus to cell-surface receptors: Structures of five hemagglutinin-sialyloligosaccharide complexes determined by x-ray crystallography. Virology 232, 19-31 .10.1006/viro.1997.8526
[3] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 .10.1107/S0907444904019158
[4] Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., Chen, J., Jie, Z., Qiu, H., Xu, K., . (2013). Human infection with a novel avianorigin influenza A (H7N9) virus. N Engl J Med 368, 1888-1897 .10.1056/NEJMoa1304459
[5] Ha, Y., Stevens, D.J., Skehel, J.J., and Wiley, D.C. (2001). X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci U S A 98, 11181-11186 .10.1073/pnas.201401198
[6] Hatta, M., Gao, P., Halfmann, P., and Kawaoka, Y. (2001). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840-1842 .10.1126/science.1062882
[7] Herfst, S., Schrauwen, E.J., Linster, M., Chutinimitkul, S., de Wit, E., Munster, V.J., Sorrell, E.M., Bestebroer, T.M., Burke, D.F., Smith, D.J., . (2012). Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336, 1534-1541 .10.1126/science.1213362
[8] Imai, M., Watanabe, T., Hatta, M., Das, S.C., Ozawa, M., Shinya, K., Zhong, G., Hanson, A., Katsura, H., Watanabe, S., . (2012). Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486, 420-428 .
[9] Lu, X., Shi, Y., Gao, F., Xiao, H., Wang, M., Qi, J., and Gao, G.F. (2012). Insights into avian influenza virus pathogenicity: the hemagglutinin precursor HA0 of subtype H16 has an alpha-helix structure in Its cleavage site with inefficient HA1/HA2 cleavage. J Virol 86, 12861-12870 .10.1128/JVI.01606-12
[10] Medina, R.A., and Garcia-Sastre, A. (2011). Influenza A viruses: new research developments. Nat Rev Microbiol 9, 590-603 .10.1038/nrmicro2613
[11] Morris, A.L., MacArthur, M.W., Hutchinson, E.G., and Thornton, J.M. (1992). Stereochemical quality of protein structure coordinates. Proteins 12, 345-364 .10.1002/prot.340120407
[12] Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-255 .10.1107/S0907444996012255
[13] Neumann, G., Macken, C.A., Karasin, A.I., Fouchier, R.A., and Kawaoka, Y. (2012). Egyptian H5N1 influenza viruses-cause for concern? PLoS Pathog 8, e1002932.10.1371/journal.ppat.1002932
[14] Neumann, G., Noda, T., and Kawaoka, Y. (2009). Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459, 931-939 .10.1038/nature08157
[15] Peiris, J.S., de Jong, M.D., and Guan, Y. (2007). Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 20, 243-267 .10.1128/CMR.00037-06
[16] Petersen, J., Wurzbacher, S.J., Williamson, N.A., Ramarathinam, S.H., Reid, H.H., Nair, A.K., Zhao, A.Y., Nastovska, R., Rudge, G., Rossjohn, J., . (2009). Phosphorylated self-peptides alter human leukocyte antigen class I-restricted antigen presentation and generate tumor-specific epitopes. Proc Natl Acad Sci U S A 106, 2776-2781 .10.1073/pnas.0812901106
[17] Read, R.J. (2001). Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr D Biol Crystallogr 57, 1373-1382 .10.1107/S0907444901012471
[18] Rogers, G.N., Pritchett, T.J., Lane, J.L., and Paulson, J.C. (1983). Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants. Virology 131, 394-408 .10.1016/0042-6822(83)90507-X
[19] Stevens, J., Blixt, O., Tumpey, T.M., Taubenberger, J.K., Paulson, J.C., and Wilson, I.A. (2006). Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404-410 .10.1126/science.1124513
[20] Stevens, J., Corper, A.L., Basler, C.F., Taubenberger, J.K., Palese, P., and Wilson, I.A. (2004). Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303, 1866-1870 .10.1126/science.1093373
[21] Sun, X., Shi, Y., Lu, X., He, J., Gao, F., Yan, J., Qi, J., and Gao, G.F. (2013). Bat-derived influenza hemagglutinin h17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. Cell Rep 3, 769-778 .10.1016/j.celrep.2013.01.025
[22] Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D.A., Chen, L.M., Recuenco, S., Ellison, J.A., Davis, C.T., York, I.A., . (2012). A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A 109, 4269-4274 .
[23] Tumpey, T.M., Maines, T.R., Van Hoeven, N., Glaser, L., Solorzano, A., Pappas, C., Cox, N.J., Swayne, D.E., Palese, P., Katz, J.M., . (2007). A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315, 655-659 .10.1126/science.1136212
[24] Vaguine, A.A., Richelle, J., and Wodak, S.J. (1999). SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr D Biol Crystallogr 55, 191-205 .10.1107/S0907444998006684
[25] Webb, A.I., Dunstone, M.A., Chen, W., Aguilar, M.I., Chen, Q., Jackson, H., Chang, L., Kjer-Nielsen, L., Beddoe, T., McCluskey, J., . (2004). Functional and structural characteristics of NY-ESO- 1-related HLA A2-restricted epitopes and the design of a novel immunogenic analogue. J Biol Chem 279, 23438-23446 .10.1074/jbc.M314066200
[26] Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., and Kawaoka, Y. (1992). Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152-179 .
[27] Xiong, X., Coombs, P.J., Martin, S.R., Liu, J., Xiao, H., McCauley, J.W., Locher, K., Walker, P.A., Collins, P.J., Kawaoka, Y., . (2013). Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature 497, 392-396 .10.1038/nature12144
[28] Yamada, S., Suzuki, Y., Suzuki, T., Le, M.Q., Nidom, C.A., Sakai-Tagawa, Y., Muramoto, Y., Ito, M., Kiso, M., Horimoto, T., . (2006). Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444, 378-382 .10.1038/nature05264
[29] Zhang, N., Qi, J., Feng, S., Gao, F., Liu, J., Pan, X., Chen, R., Li, Q., Chen, Z., Li, X., . (2011). Crystal structure of swine major histo- compatibility complex class I SLA-1 0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic T lymphocyte epitope peptides. J Virol 85, 11709-11724 .10.1128/JVI.05040-11
[30] Zhang, W., Qi, J., Shi, Y., Li, Q., Gao, F., Sun, Y., Lu, X., Lu, Q., Vavricka, C.J., Liu, D., . (2010). Crystal structure of the swineorigin A (H1N1)-2009 influenza A virus hemagglutinin (HA) reveals similar antigenicity to that of the 1918 pandemic virus. Protein Cell 1, 459-467 .10.1007/s13238-010-0059-1
[31] Zhang, W., Shi, Y., Lu, X., Shu, Y., Qi, J., and Gao, G.F. (2013). An Airborne Transmissible Avian Influenza H5 Hemagglutinin Seen at the Atomic Level. Science . (In Press).10.1126/science.1236787
[32] Zhu, X., Yu, W., McBride, R., Li, Y., Chen, L.M., Donis, R.O., Tong, S., Paulson, J.C., and Wilson, I.A. (2013). Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc Natl Acad Sci U S A 110, 1458-1463 .10.1073/pnas.1218509110
AI Summary AI Mindmap
PDF(836 KB)

Accesses

Citations

Detail

Sections
Recommended

/