Structure analysis of the extracellular domain reveals disulfide bond forming-protein properties of Mycobacterium tuberculosis Rv2969c

Lu Wang1,2, Jun Li1,2, Xiangxi Wang1,2, Wu Liu1, Xuejun C. Zhang1, Xuemei Li1, Zihe Rao1,3()

PDF(1503 KB)
PDF(1503 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (8) : 628-640. DOI: 10.1007/s13238-013-3033-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Structure analysis of the extracellular domain reveals disulfide bond forming-protein properties of Mycobacterium tuberculosis Rv2969c

  • Lu Wang1,2, Jun Li1,2, Xiangxi Wang1,2, Wu Liu1, Xuejun C. Zhang1, Xuemei Li1, Zihe Rao1,3()
Author information +
History +

Abstract

Disulfide bond-forming (Dsb) protein is a bacterial periplasmic protein that is essential for the correct folding and disulfide bond formation of secreted or cell wallassociated proteins. DsbA introduces disulfide bonds into folding proteins, and is re-oxidized through interaction with its redox partner DsbB. Mycobacterium tuberculosis, a Gram-positive bacterium, expresses a DsbA-like protein ( Rv2969c), an extracellular protein that has its Nterminus anchored in the cell membrane. Since Rv2969c is an essential gene, crucial for disulfide bond formation, research of DsbA may provide a target of a new class of anti-bacterial drugs for treatment of M.tuberculosis infection. In the present work, the crystal structures of theextracellular region of Rv2969c (Mtb DsbA) were determined in both its reduced and oxidized states. The overall structure of Mtb DsbA can be divided into two domains: a classical thioredoxin-like domain with a typical CXXC active site, and an α-helical domain. It largely resembles its Escherichiacoli homologue EcDsbA, however, it possesses a truncated binding groove; in addition, its active site is surrounded by an acidic, rather than hydrophobic surface. In our oxidoreductase activity assay, Mtb DsbA exhibited a different substrate specificity when compared to EcDsbA. Moreover, structural analysis revealed a second disulfide bond in Mtb DsbA, which is rare in the previously reported DsbA structures, and is assumed to contribute to the overall stability of Mtb DsbA. To investigate the disulphide formation pathway in M.tuberculosis, we modeled Mtb Vitamin K epoxide reductase (Mtb VKOR), a binding partner of Mtb DsbA, to Mtb DsbA.

Keywords

Mycobacterium tuberculosis / disulfide bond forming protein / X-ray crystallography

Cite this article

Download citation ▾
Lu Wang, Jun Li, Xiangxi Wang, Wu Liu, Xuejun C. Zhang, Xuemei Li, Zihe Rao. Structure analysis of the extracellular domain reveals disulfide bond forming-protein properties of Mycobacterium tuberculosis Rv2969c. Prot Cell, 2013, 4(8): 628‒640 https://doi.org/10.1007/s13238-013-3033-x

References

[1] Alphey, M.S., Gabrielsen, M., Micossi, E., Leonard, G.A., McSweeney, S.M., Ravelli, R.B., Tetaud, E., Fairlamb, A.H., Bond, C.S., and Hunter, W.N. (2003). Tryparedoxins from Crithidia fasciculata and Trypanosoma brucei: photoreduction of the redox disulfide using synchrotron radiation and evidence for a conformational switch implicated in function. J Biol Chem 278, 25919-25925 .10.1074/jbc.M301526200
[2] Chim, N., Riley, R., The, J., Im, S., Segelke, B., Lekin, T., Yu, M., Hung, L.W., Terwilliger, T., Whitelegge, J.P., . (2010). An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. J Mol Biol 396, 1211-1226 .10.1016/j.jmb.2009.12.060
[3] Comas, I., and Gagneux, S. (2009). The past and future of tuberculosis research. PLoS Pathog 5, e1000600.10.1371/journal.ppat.1000600
[4] Crow, A., Lewin, A., Hecht, O., Carlsson Moller, M., Moore, G.R., Hederstedt, L., and Le Brun, N.E. (2009a). Crystal structure and biophysical properties of Bacillus subtilis BdbD. An oxidizing thiol:disulfide oxidoreductase containing a novel metal site. J Biol Chem 284, 23719-23733 .10.1074/jbc.M109.005785
[5] Crow, A., Liu, Y., Moller, M.C., Le Brun, N.E., and Hederstedt, L. (2009b). Structure and functional properties of Bacillus subtilis en- dospore biogenesis factor StoA. J Biol Chem 284, 10056-10066 .10.1074/jbc.M809566200
[6] Daniels, R., Mellroth, P., Bernsel, A., Neiers, F., Normark, S., von Heijne, G., and Henriques-Normark, B. (2010). Disulfide bond formation and cysteine exclusion in gram-positive bacteria. J Biol Chem 2 85, 3300-3309.10.1074/jbc.M109.081398
[7] DeLano, W.L. (2002). The PyMOL Molecular Graphics System. De-Lano Scientific, San Carlos, CA, USA .
[8] Denoncin, K., and Collet, J.F. (2012). Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. Antioxid Redox Signal 19, 63-71 .10.1089/ars.2012.4864
[9] Depuydt, M., Messens, J., and Collet, J.F. (2011). How proteins form disulfide bonds. Antioxid Redox Signal 15, 49-66 .10.1089/ars.2010.3575
[10] Dorenbos, R., Stein, T., Kabel, J., Bruand, C., Bolhuis, A., Bron, S., Quax, W.J., and Van Dijl, J.M. (2002). Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J Biol Chem 277, 16682-16688 .10.1074/jbc.M201158200
[11] Dumoulin, A., Grauschopf, U., Bischoff, M., Thony-Meyer, L., and Berger- Bachi, B. (2005). Staphylococcus aureus DsbA is a membranebound lipoprotein with thiol-disulfide oxidoreductase activity. Arch Microbiol 184, 117-128 .10.1007/s00203-005-0024-1
[12] Dutton, R.J., Boyd, D., Berkmen, M., and Beckwith, J. (2008). Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc Natl Acad Sci U S A 105, 11933-11938 .10.1073/pnas.0804621105
[13] Dutton, R.J., Wayman, A., Wei, J.R., Rubin, E.J., Beckwith, J., and Boyd, D. (2010). Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin. Proc Natl Acad Sci U S A 107, 297-301 .10.1073/pnas.0912952107
[14] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 .10.1107/S0907444904019158
[15] Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501 .10.1107/S0907444910007493
[16] Ericsson, U.B., Hallberg, B.M., DeTitta, G.T., Dekker, N., and Nordlund, P. (2006). Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357, 289-298 .10.1016/j.ab.2006.07.027
[17] Erlendsson, L.S., Acheson, R.M., Hederstedt, L., and Le Brun, N.E. (2003). Bacillus subtilis ResA is a thiol-disulfide oxidoreductase involved in cytochrome csynthesis. J Biol Chem 278, 17852-17858 .10.1074/jbc.M300103200
[18] Erlendsson, L.S., and Hederstedt, L. (2002). Mutations in the thiol-disulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells. J Bacteriol 184, 1423-1429 .10.1128/JB.184.5.1423-1429.2002
[19] Goldstone, D., Baker, E.N., and Metcalf, P. (2005). Crystallization and preliminary diffraction studies of the C-terminal domain of the DipZ homologue from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 61, 243-245 .10.1107/S1744309105001909
[20] Goulding, C.W., Apostol, M., Anderson, D.H., Gill, H.S., Smith, C.V., Kuo, M.R., Yang, J.K., Waldo, G.S., Suh, S.W., Chauhan, R., . (2002). The TB structural genomics consortium: providing a structural foundation for drug discovery. Curr Drug Targets Infect Disord 2, 121-141 .10.2174/1568005023342551
[21] Goulding, C.W., Apostol, M.I., Gleiter, S., Parseghian, A., Bardwell, J., Gennaro, M., and Eisenberg, D. (2004). Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis. J Biol Chem 279, 3516-3524 .10.1074/jbc.M311833200
[22] Goulding, C.W., Perry, L.J., Anderson, D., Sawaya, M.R., Cascio, D., Apostol, M.I., Chan, S., Parseghian, A., Wang, S.S., Wu, Y., . (2003). Structural genomics of Mycobacterium tuberculosis: a preliminary report of progress at UCLA. Biophys Chem 105, 361-370 .10.1016/S0301-4622(03)00101-7
[23] Hennecke, J., Sebbel, P., and Glockshuber, R. (1999). Random circular permutation of DsbA reveals segments that are essential for protein folding and stability. J Mol Biol 286, 1197-1215 .10.1006/jmbi.1998.2531
[24] Heras, B., Kurz, M., Jarrott, R., Shouldice, S.R., Frei, P., Robin, G., Cemazar, M., Thony-Meyer, L., Glockshuber, R., and Martin, J.L. (2008). Staphylococcus aureus DsbA does not have a destabilizing disulfide. A new paradigm for bacterial oxidative folding. J Biol Chem 283, 4261-4271 .10.1074/jbc.M707838200
[25] Hu, Y., Dong, X., Wu, A., Cao, Y., Tian, L., and Jiang, T. (2011). Incorporation of local structural preference potential improves fold recognition. PLoS One 6, e17215.10.1371/journal.pone.0017215
[26] Inaba, K., and Ito, K. (2008). Structure and mechanisms of the DsbBDsbA disulfide bond generation machine. Biochim Biophys Acta 1783, 520-529 .10.1016/j.bbamcr.2007.11.006
[27] Inaba, K., Murakami, S., Suzuki, M., Nakagawa, A., Yamashita, E., Okada, K., and Ito, K. (2006). Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell 127, 789-801 .10.1016/j.cell.2006.10.034
[28] Kadokura, H., Tian, H., Zander, T., Bardwell, J.C., and Beckwith, J. (2004). Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science 303, 534-537 .10.1126/science.1091724
[29] Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774-797 .10.1016/j.jmb.2007.05.022
[30] Kurz, M., Iturbe-Ormaetxe, I., Jarrott, R., Shouldice, S.R., Wouters, M.A., Frei, P., Glockshuber, R., O’Neill, S.L., Heras, B., and Martin, J.L. (2009). Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientis. Antioxid Redox Signal 11, 1485-1500 .10.1089/ars.2008.2420
[31] Li, W., Schulman, S., Dutton, R.J., Boyd, D., Beckwith, J., and Rapoport, T.A. (2010). Structure of a bacterial homologue of vitamin K epoxide reductase. Nature 463, 507-512 .10.1038/nature08720
[32] Martin, J.L., Bardwell, J.C., and Kuriyan, J. (1993). Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365, 464-468 .10.1038/365464a0
[33] Matthews, B.W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491-497 .10.1016/0022-2836(68)90205-2
[34] McCarthy, A.A., Haebel, P.W., Torronen, A., Rybin, V., Baker, E.N., and Metcalf, P. (2000). Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat Struct Biol 7, 196-199 .10.1038/73295
[35] Meima, R., Eschevins, C., Fillinger, S., Bolhuis, A., Hamoen, L.W., Dorenbos, R., Quax, W.J., van Dijl, J.M., Provvedi, R., Chen, I., . (2002). The bdbDC operon of Bacillus subtilis encodes thioldisulfide oxidoreductases required for competence development. J Biol Chem 277, 6994-7001 .10.1074/jbc.M111380200
[36] Messens, J., and Collet, J.F. (2006). Pathways of disulfide bond formation in Escherichia coli. Int J Biochem Cell Biol 38, 1050-1062 .10.1016/j.biocel.2005.12.011
[37] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276, 307-326 .10.1016/S0076-6879(97)76066-X
[38] Paxman, J.J., Borg, N.A., Horne, J., Thompson, P.E., Chin, Y., Sharma, P., Simpson, J.S., Wielens, J., Piek, S., Kahler, C.M., . (2009). The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes. J Biol Chem 284, 17835-17845 .10.1074/jbc.M109.011502
[39] Reid, E., Cole, J., and Eaves, D.J. (2001). The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly. Biochem J 355, 51-58 .10.1042/0264-6021:3550051
[40] Shao, F., Bader, M.W., Jakob, U., and Bardwell, J.C. (2000). DsbG, a protein disulfide isomerase with chaperone activity. J Biol Chem 275, 13349-13352 .10.1074/jbc.275.18.13349
[41] Shouldice, S.R., Heras, B., Walden, P.M., Totsika, M., Schembri, M.A., and Martin, J.L. (2011). Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid Redox Signal 14, 1729-1760 .10.1089/ars.2010.3344
[42] Stewart, E.J., Katzen, F., and Beckwith, J. (1999). Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J 18, 5963-5971 .10.1093/emboj/18.21.5963
[43] Trott, O., and Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455-461 .
[44] Wang, C., Chen, S., Wang, X., Wang, L., Wallis, A.K., Freedman, R.B., and Wang, C.C. (2010). Plasticity of human protein disulfide isomerase: evidence for mobility around the X-linker region and its functional significance. J Biol Chem 285, 26788-26797 .10.1074/jbc.M110.107839
[45] Wang, X., Dutton, R.J., Beckwith, J., and Boyd, D. (2011). Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase. Antioxid Redox Signal 14, 1413-1420 .10.1089/ars.2010.3558
[46] Weik, M., Ravelli, R.B., Kryger, G., McSweeney, S., Raves, M.L., Harel, M., Gros, P., Silman, I., Kroon, J., and Sussman, J.L. (2000). Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc Natl Acad Sci U S A 97, 623-628 .10.1073/pnas.97.2.623
[47] Yang, Q., Yu, K., Yan, L., Li, Y., Chen, C., and Li, X. (2011). Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis. Protein Cell 2, 745-754 .10.1007/s13238-011-1094-2
AI Summary AI Mindmap
PDF(1503 KB)

Accesses

Citations

Detail

Sections
Recommended

/