[1] Alphey, M.S., Gabrielsen, M., Micossi, E., Leonard, G.A., McSweeney, S.M., Ravelli, R.B., Tetaud, E., Fairlamb, A.H., Bond, C.S., and Hunter, W.N. (2003). Tryparedoxins from Crithidia fasciculata and Trypanosoma brucei: photoreduction of the redox disulfide using synchrotron radiation and evidence for a conformational switch implicated in function.
J Biol Chem 278, 25919-25925 .
10.1074/jbc.M301526200[2] Chim, N., Riley, R., The, J., Im, S., Segelke, B., Lekin, T., Yu, M., Hung, L.W., Terwilliger, T., Whitelegge, J.P.,
. (2010). An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis.
J Mol Biol 396, 1211-1226 .
10.1016/j.jmb.2009.12.060[3] Comas, I., and Gagneux, S. (2009). The past and future of tuberculosis research.
PLoS Pathog 5, e1000600.
10.1371/journal.ppat.1000600[4] Crow, A., Lewin, A., Hecht, O., Carlsson Moller, M., Moore, G.R., Hederstedt, L., and Le Brun, N.E. (2009a). Crystal structure and biophysical properties of Bacillus subtilis BdbD. An oxidizing thiol:disulfide oxidoreductase containing a novel metal site.
J Biol Chem 284, 23719-23733 .
10.1074/jbc.M109.005785[5] Crow, A., Liu, Y., Moller, M.C., Le Brun, N.E., and Hederstedt, L. (2009b). Structure and functional properties of Bacillus subtilis en- dospore biogenesis factor StoA.
J Biol Chem 284, 10056-10066 .
10.1074/jbc.M809566200[6] Daniels, R., Mellroth, P., Bernsel, A., Neiers, F., Normark, S., von Heijne, G., and Henriques-Normark, B. (2010). Disulfide bond formation and cysteine exclusion in gram-positive bacteria. J Biol Chem 2 85, 3300-3309.
10.1074/jbc.M109.081398[7] DeLano, W.L. (2002). The PyMOL Molecular Graphics System.
De-Lano Scientific, San Carlos, CA, USA .
[8] Denoncin, K., and Collet, J.F. (2012). Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead.
Antioxid Redox Signal 19, 63-71 .
10.1089/ars.2012.4864[9] Depuydt, M., Messens, J., and Collet, J.F. (2011). How proteins form disulfide bonds.
Antioxid Redox Signal 15, 49-66 .
10.1089/ars.2010.3575[10] Dorenbos, R., Stein, T., Kabel, J., Bruand, C., Bolhuis, A., Bron, S., Quax, W.J., and Van Dijl, J.M. (2002). Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168.
J Biol Chem 277, 16682-16688 .
10.1074/jbc.M201158200[11] Dumoulin, A., Grauschopf, U., Bischoff, M., Thony-Meyer, L., and Berger- Bachi, B. (2005). Staphylococcus aureus DsbA is a membranebound lipoprotein with thiol-disulfide oxidoreductase activity.
Arch Microbiol 184, 117-128 .
10.1007/s00203-005-0024-1[12] Dutton, R.J., Boyd, D., Berkmen, M., and Beckwith, J. (2008). Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation.
Proc Natl Acad Sci U S A 105, 11933-11938 .
10.1073/pnas.0804621105[13] Dutton, R.J., Wayman, A., Wei, J.R., Rubin, E.J., Beckwith, J., and Boyd, D. (2010). Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin.
Proc Natl Acad Sci U S A 107, 297-301 .
10.1073/pnas.0912952107[14] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr 60, 2126-2132 .
10.1107/S0907444904019158[15] Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot.
Acta Crystallogr D Biol Crystallogr 66, 486-501 .
10.1107/S0907444910007493[16] Ericsson, U.B., Hallberg, B.M., DeTitta, G.T., Dekker, N., and Nordlund, P. (2006). Thermofluor-based high-throughput stability optimization of proteins for structural studies.
Anal Biochem 357, 289-298 .
10.1016/j.ab.2006.07.027[17] Erlendsson, L.S., Acheson, R.M., Hederstedt, L., and Le Brun, N.E. (2003). Bacillus subtilis ResA is a thiol-disulfide oxidoreductase involved in cytochrome csynthesis.
J Biol Chem 278, 17852-17858 .
10.1074/jbc.M300103200[18] Erlendsson, L.S., and Hederstedt, L. (2002). Mutations in the thiol-disulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells.
J Bacteriol 184, 1423-1429 .
10.1128/JB.184.5.1423-1429.2002[19] Goldstone, D., Baker, E.N., and Metcalf, P. (2005). Crystallization and preliminary diffraction studies of the C-terminal domain of the DipZ homologue from Mycobacterium tuberculosis.
Acta Crystallogr Sect F Struct Biol Cryst Commun 61, 243-245 .
10.1107/S1744309105001909[20] Goulding, C.W., Apostol, M., Anderson, D.H., Gill, H.S., Smith, C.V., Kuo, M.R., Yang, J.K., Waldo, G.S., Suh, S.W., Chauhan, R.,
. (2002). The TB structural genomics consortium: providing a structural foundation for drug discovery.
Curr Drug Targets Infect Disord 2, 121-141 .
10.2174/1568005023342551[21] Goulding, C.W., Apostol, M.I., Gleiter, S., Parseghian, A., Bardwell, J., Gennaro, M., and Eisenberg, D. (2004). Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis.
J Biol Chem 279, 3516-3524 .
10.1074/jbc.M311833200[22] Goulding, C.W., Perry, L.J., Anderson, D., Sawaya, M.R., Cascio, D., Apostol, M.I., Chan, S., Parseghian, A., Wang, S.S., Wu, Y.,
. (2003). Structural genomics of Mycobacterium tuberculosis: a preliminary report of progress at UCLA.
Biophys Chem 105, 361-370 .
10.1016/S0301-4622(03)00101-7[23] Hennecke, J., Sebbel, P., and Glockshuber, R. (1999). Random circular permutation of DsbA reveals segments that are essential for protein folding and stability.
J Mol Biol 286, 1197-1215 .
10.1006/jmbi.1998.2531[24] Heras, B., Kurz, M., Jarrott, R., Shouldice, S.R., Frei, P., Robin, G., Cemazar, M., Thony-Meyer, L., Glockshuber, R., and Martin, J.L. (2008). Staphylococcus aureus DsbA does not have a destabilizing disulfide. A new paradigm for bacterial oxidative folding.
J Biol Chem 283, 4261-4271 .
10.1074/jbc.M707838200[25] Hu, Y., Dong, X., Wu, A., Cao, Y., Tian, L., and Jiang, T. (2011). Incorporation of local structural preference potential improves fold recognition.
PLoS One 6, e17215.
10.1371/journal.pone.0017215[26] Inaba, K., and Ito, K. (2008). Structure and mechanisms of the DsbBDsbA disulfide bond generation machine.
Biochim Biophys Acta 1783, 520-529 .
10.1016/j.bbamcr.2007.11.006[27] Inaba, K., Murakami, S., Suzuki, M., Nakagawa, A., Yamashita, E., Okada, K., and Ito, K. (2006). Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation.
Cell 127, 789-801 .
10.1016/j.cell.2006.10.034[28] Kadokura, H., Tian, H., Zander, T., Bardwell, J.C., and Beckwith, J. (2004). Snapshots of DsbA in action: detection of proteins in the process of oxidative folding.
Science 303, 534-537 .
10.1126/science.1091724[29] Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state.
J Mol Biol 372, 774-797 .
10.1016/j.jmb.2007.05.022[30] Kurz, M., Iturbe-Ormaetxe, I., Jarrott, R., Shouldice, S.R., Wouters, M.A., Frei, P., Glockshuber, R., O’Neill, S.L., Heras, B., and Martin, J.L. (2009). Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientis.
Antioxid Redox Signal 11, 1485-1500 .
10.1089/ars.2008.2420[31] Li, W., Schulman, S., Dutton, R.J., Boyd, D., Beckwith, J., and Rapoport, T.A. (2010). Structure of a bacterial homologue of vitamin K epoxide reductase.
Nature 463, 507-512 .
10.1038/nature08720[32] Martin, J.L., Bardwell, J.C., and Kuriyan, J. (1993). Crystal structure of the DsbA protein required for disulphide bond formation in vivo.
Nature 365, 464-468 .
10.1038/365464a0[33] Matthews, B.W. (1968). Solvent content of protein crystals.
J Mol Biol 33, 491-497 .
10.1016/0022-2836(68)90205-2[34] McCarthy, A.A., Haebel, P.W., Torronen, A., Rybin, V., Baker, E.N., and Metcalf, P. (2000). Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli.
Nat Struct Biol 7, 196-199 .
10.1038/73295[35] Meima, R., Eschevins, C., Fillinger, S., Bolhuis, A., Hamoen, L.W., Dorenbos, R., Quax, W.J., van Dijl, J.M., Provvedi, R., Chen, I.,
. (2002). The bdbDC operon of Bacillus subtilis encodes thioldisulfide oxidoreductases required for competence development.
J Biol Chem 277, 6994-7001 .
10.1074/jbc.M111380200[36] Messens, J., and Collet, J.F. (2006). Pathways of disulfide bond formation in Escherichia coli.
Int J Biochem Cell Biol 38, 1050-1062 .
10.1016/j.biocel.2005.12.011[37] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode.
Method Enzymol 276, 307-326 .
10.1016/S0076-6879(97)76066-X[38] Paxman, J.J., Borg, N.A., Horne, J., Thompson, P.E., Chin, Y., Sharma, P., Simpson, J.S., Wielens, J., Piek, S., Kahler, C.M.,
. (2009). The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes.
J Biol Chem 284, 17835-17845 .
10.1074/jbc.M109.011502[39] Reid, E., Cole, J., and Eaves, D.J. (2001). The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly.
Biochem J 355, 51-58 .
10.1042/0264-6021:3550051[40] Shao, F., Bader, M.W., Jakob, U., and Bardwell, J.C. (2000). DsbG, a protein disulfide isomerase with chaperone activity.
J Biol Chem 275, 13349-13352 .
10.1074/jbc.275.18.13349[41] Shouldice, S.R., Heras, B., Walden, P.M., Totsika, M., Schembri, M.A., and Martin, J.L. (2011). Structure and function of DsbA, a key bacterial oxidative folding catalyst.
Antioxid Redox Signal 14, 1729-1760 .
10.1089/ars.2010.3344[42] Stewart, E.J., Katzen, F., and Beckwith, J. (1999). Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli.
EMBO J 18, 5963-5971 .
10.1093/emboj/18.21.5963[43] Trott, O., and Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.
J Comput Chem 31, 455-461 .
[44] Wang, C., Chen, S., Wang, X., Wang, L., Wallis, A.K., Freedman, R.B., and Wang, C.C. (2010). Plasticity of human protein disulfide isomerase: evidence for mobility around the X-linker region and its functional significance.
J Biol Chem 285, 26788-26797 .
10.1074/jbc.M110.107839[45] Wang, X., Dutton, R.J., Beckwith, J., and Boyd, D. (2011). Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase.
Antioxid Redox Signal 14, 1413-1420 .
10.1089/ars.2010.3558[46] Weik, M., Ravelli, R.B., Kryger, G., McSweeney, S., Raves, M.L., Harel, M., Gros, P., Silman, I., Kroon, J., and Sussman, J.L. (2000). Specific chemical and structural damage to proteins produced by synchrotron radiation.
Proc Natl Acad Sci U S A 97, 623-628 .
10.1073/pnas.97.2.623[47] Yang, Q., Yu, K., Yan, L., Li, Y., Chen, C., and Li, X. (2011). Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis.
Protein Cell 2, 745-754 .
10.1007/s13238-011-1094-2