Flexible interwoven termini determine the thermal stability of thermosomes

Kai Zhang1,3, Li Wang2, Yanxin Liu4, Kwok-Yan Chan4, Xiaoyun Pang1, Klaus Schulten4, Zhiyang Dong2, Fei Sun1()

PDF(1430 KB)
PDF(1430 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (6) : 432-444. DOI: 10.1007/s13238-013-3026-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Flexible interwoven termini determine the thermal stability of thermosomes

  • Kai Zhang1,3, Li Wang2, Yanxin Liu4, Kwok-Yan Chan4, Xiaoyun Pang1, Klaus Schulten4, Zhiyang Dong2, Fei Sun1()
Author information +
History +

Abstract

Group II chaperonins, which assemble as double-ring complexes, assist in the refolding of nascent peptides or denatured proteins in an ATP-dependent manner. The molecular mechanism of group II chaperonin assembly and thermal stability is yet to be elucidated. Here, we selected the group II chaperonins (cpn-α and cpn-β), also called thermosomes, from Acidianus tengchongensis and investigated their assembly and thermal stability. We found that the binding of ATP or its analogs contributed to the successful assembly of thermosomes and enhanced their thermal stabilities. Cpn-β is more thermally stable than cpn-α, while the thermal stability of the hetero thermosome cpn-αβ is intermediate. Cryo-electron microscopy reconstructions of cpn-α and cpn-β revealed the interwoven densities of their non-conserved fl exible N/C-termini around the equatorial planes. The deletion or swapping of their termini and pH-dependent thermal stability assays revealed the key role of the termini electrostatic interactions in the assembly and thermal stability of the thermosomes.

Keywords

group II chaperonin / thermosome / thermal stability / self-assembly / flexible terminus

Cite this article

Download citation ▾
Kai Zhang, Li Wang, Yanxin Liu, Kwok-Yan Chan, Xiaoyun Pang, Klaus Schulten, Zhiyang Dong, Fei Sun. Flexible interwoven termini determine the thermal stability of thermosomes. Prot Cell, 2013, 4(6): 432‒444 https://doi.org/10.1007/s13238-013-3026-9

References

[1] Bigotti, M.G., and Clarke, A.R. (2008). Chaperonins: The hunt for the Group II mechanism. Archi Biochem Biophy 474, 331-339 10.1016/j.abb.2008.03.015
[2] Bukau, B., and Horwich, A.L. (1998). The Hsp70 and Hsp60 chaper-one machines. Cell 92, 351-366 10.1016/S0092-8674(00)80928-9
[3] Chan, K.Y., Gumbart, J., McGreevy, R., Watermeyer, J.M., Sewell, B.T., and Schulten, K. (2011). Symmetry-restrained flexible fitting for symmetric EM maps. Structure 19, 1211-1218 10.1016/j.str.2011.07.017
[4] Clare, D.K., Bakkes, P.J., van Heerikhuizen, H., van der Vies, S.M., and Saibil, H.R. (2009). Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature 457, 107-110 10.1038/nature07479
[5] Clare, D.K., Stagg, S., Quispe, J., Farr, G.W., Horwich, A.L., and Saibil, H.R. (2008). Multiple states of a nucleotide-bound group 2 chaper-onin. Structure 16, 528-534 10.1016/j.str.2008.01.016
[6] Clare, D.K., Vasishtan, D., Stagg, S., Quispe, J., Farr, G.W., Topf, M., Horwich, A.L., and Saibil, H.R. (2012). ATP-triggered conforma-tional changes delineate substrate-binding and-folding mechanics of the GroEL chaperonin. Cell 149, 113-123 10.1016/j.cell.2012.02.047
[7] Dekker, C., Roe, S.M., McCormack, E.A., Beuron, F., Pearl, L.H., and Willison, K.R. (2011). The crystal structure of yeast CCT reveals in-trinsic asymmetry of eukaryotic cytosolic chaperonins. EMBO J 30, 3078-3090 10.1038/emboj.2011.208
[8] Ditzel, L., Lowe, J., Stock, D., Stetter, K.O., Huber, H., Huber, R., and Steinbacher, S. (1998). Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93, 125-138 10.1016/S0092-8674(00)81152-6
[9] Douglas, N.R., Reissmann, S., Zhang, J., Chen, B., Jakana, J., Kumar, R., Chiu, W., and Frydman, J. (2011). Dual action of ATP hydrolysis couples lid cosure to substrate release into the group II chaperonin chamber. Cell 144, 240-252 10.1016/j.cell.2010.12.017
[10] Ellis, R.J. (2006). Protein folding: inside the cage. Nature 442, 360-362 .10.1038/442360a
[11] Ericsson, U.B., Hallberg, B.M., Detitta, G.T., Dekker, N., and Nordlund, P. (2006). Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357, 289-298 10.1016/j.ab.2006.07.027
[12] Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., and Leith, A. (1996). SPIDER and WEB: processing and visualiza-tion of images in 3D electron microscopy and related fields. J Struct Biol 116, 190-199 10.1006/jsbi.1996.0030
[13] Frydman, J., Nimmesgern, E., Erdjument-Bromage, H., Wall, J.S., Tempst, P., and Hartl, F.U. (1992). Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J 11, 4767-4778
[14] Gao, Y., Thomas, J.O., Chow, R.L., Lee, G.H., and Cowan, N.J. (1992). A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell 69, 1043-1050 10.1016/0092-8674(92)90622-J
[15] He, Z.G., Zhong, H., and Li, Y. (2004). Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. Curr Microbiol 48, 159-163 10.1007/s00284-003-4155-9
[16] Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual mo-lecular dynamics. J Mol Graph 14, 33-38 , 27-38
[17] Huo, Y., Hu, Z., Zhang, K., Wang, L., Zhai, Y., Zhou, Q., Lander, G., Zhu, J., He, Y., Pang, X., . (2010). Crystal structure of group II chaperonin in the open state. Structure 18, 1270-1279 10.1016/j.str.2010.07.009
[18] Izumi, M., Fujiwara, S., Takagi, M., Fukui, K., and Imanaka, T. (2001). Two kinds of archaeal chaperonin with different temperature de-pendency from a hyperthermophile. Biochem Biophys Res Com-mun 280, 581-587 10.1006/bbrc.2000.4154
[19] Kagawa, H.K., Yaoi, T., Brocchieri, L., McMillan, R.A., Alton, T., and Trent, J.D. (2003). The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermo-philic archaeon. Mol Microbiol 48, 143-156 10.1046/j.1365-2958.2003.03418.x
[20] Kim, S., Willison, K.R., and Horwich, A.L. (1994). Cystosolic chap-eronin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem Sci 19, 543-548 10.1016/0968-0004(94)90058-2
[21] Klumpp, M., Baumeister, W., and Essen, L.O. (1997). Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell 91, 263-270 10.1016/S0092-8674(00)80408-0
[22] Ludtke, S.J., Baldwin, P.R., and Chiu, W. (1999). EMAN: semiauto-mated software for high-resolution single-particle reconstructions. J Struct Biol 128, 82-97 10.1006/jsbi.1999.4174
[23] Luo, H., and Robb, F.T. (2011). A modulator domain controlling thermal stability in the Group II chaperonins of Archaea. Archi Biochem Bio-phy 512, 111-118 10.1016/j.abb.2011.04.017
[24] MacKerell, A.D., Bashford, D., Bellott,Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., . (1998). All-tom empirical potential for molecular modeling and dynamics stud-ies of proteins. J Phys Chem 102, 3586-3616 10.1021/jp973084f
[25] Mackerell, A.D., Jr., Feig, M., and Brooks, C.L., 3rd (2004). Extending the treatment of backbone energetics in protein force fields: limi-tations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25, 1400-1415 10.1002/jcc.20065
[26] Mindell, J.A., and Grigorieff, N. (2003). Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 142, 334-347 10.1016/S1047-8477(03)00069-8
[27] Munoz, I.G., Yebenes, H., Zhou, M., Mesa, P., Serna, M., Park, A.Y., Bragado-Nilsson, E., Beloso, A., de Carcer, G., Malumbres, M., . (2011). Crystal structure of the open conformation of the mam-malian chaperonin CCT in complex with tubulin. Nat Struct Mol Biol 18, 14-19 10.1038/nsmb.1971
[28] Nitsch, M., Klumpp, M., Lupas, A., and Baumeister, W. (1997). The thermosome: alternating alpha and beta-subunits within the chap-eronin of the archaeon Thermoplasma acidophilum. J Mol Biol 267, 142-149 10.1006/jmbi.1996.0849
[29] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visu-alization system for exploratory research and analysis. J Comput Chem 25, 1605-1612 10.1002/jcc.20084
[30] Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K. (2005). Scalable molecular dynamics with NAMD. J Comput Chem 26, 1781-1802 10.1002/jcc.20289
[31] Phipps, B.M., Hoffmann, A., Stetter, K.O., and Baumeister, W. (1991). A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10, 1711-1722
[32] Ranson, N.A., Clare, D.K., Farr, G.W., Houldershaw, D., Horwich, A.L., and Saibil, H.R. (2006). Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nat Struct Mol Biol 13, 147-152 10.1038/nsmb1046
[33] Ranson, N.A., Farr, G.W., Roseman, A.M., Gowen, B., Fenton, W.A., Horwich, A.L., and Saibil, H.R. (2001). ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107, 869-879 10.1016/S0092-8674(01)00617-1
[34] Sahlan, M., Kanzaki, T., and Yohda, M. (2009). Construction and char-acterization of the hetero-oligomer of the group II chaperonin from the hyperthermophilic archaeon, Thermococcus sp. strain KS-1. Extremophiles 13, 437-445 10.1007/s00792-009-0229-3
[35] Shaikh, T.R., Gao, H., Baxter, W.T., Asturias, F.J., Boisset, N., Leith, A., and Frank, J. (2008). SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micro-graphs. Nat Protoc 3, 1941-1974 10.1038/nprot.2008.156
[36] Shomura, Y., Yoshida, T., Iizuka, R., Maruyama, T., Yohda, M., and Miki, K. (2004). Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J Mol Biol 335, 1265-1278 10.1016/j.jmb.2003.11.028
[37] Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe, J., Stagg, S., Potter, C.S., and Carragher, B. (2005). Automated molecular microscopy: the new Leginon system. J Struct Biol 151, 41-60 10.1016/j.jsb.2005.03.010
[38] Tilly, K., Murialdo, H., and Georgopoulos, C. (1981). Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. Proc Natl Acad Sci U S A 78, 1629-1633 10.1073/pnas.78.3.1629
[39] Trabuco, L.G., Schreiner, E., Gumbart, J., Hsin, J., Villa, E., and Schulten, K. (2011). Applications of the molecular dynamics flexible fitting method. J Struct Biol 173, 420-427 10.1016/j.jsb.2010.09.024
[40] Trabuco, L.G., Villa, E., Mitra, K., Frank, J., and Schulten, K. (2008). Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673-683 10.1016/j.str.2008.03.005
[41] Wang, L., Hu, Z.J., Luo, Y.M., Huo, Y.W., Ma, Q., He, Y.Z., Zhang, Y.Y., Sun, F., and Dong, Z.Y. (2010). Distinct symmetry and limited pep-tide refolding activity of the thermosomes from the acidothermo-philic archaea Acidianus tengchongensis S5(T). Biochem Biophy Res Commun 393, 228-234 10.1016/j.bbrc.2010.01.106
[42] Xu, Z., Horwich, A.L., and Sigler, P.B. (1997). The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741-750 10.1038/41944
[43] Yoshida, T., Ideno, A., Hiyamuta, S., Yohda, M., and Maruyama, T. (2001). Natural chaperonin of the hyperthermophilic archaeum, Thermococcus strain KS-1: a hetero-oligomeric chaperonin with variable subunit composition. Mol Microbiol 39, 1406-1413 10.1111/j.1365-2958.2001.02334.x
[44] Yoshida, T., Ideno, A., Suzuki, R., Yohda, M., and Maruyama, T. (2002). Two kinds of archaeal group II chaperonin subunits with different thermostability in Thermococcus strain KS-1. Mol Microbiol 44, 761-769 10.1046/j.1365-2958.2002.02909.x
[45] Yoshida, T., Kanzaki, T., Iizuka, R., Komada, T., Zako, T., Suzuki, R., Maruyama, T., and Yohda, M. (2006). Contribution of the C-terminal region to the thermostability of the archaeal group II chaperonin from Thermococcus sp. strain KS-1. Extremophiles 10, 451-459 10.1007/s00792-006-0519-y
[46] Zhang, J., Baker, M.L., Schroder, G.F., Douglas, N.R., Reissmann, S., Jakana, J., Dougherty, M., Fu, C.J., Levitt, M., Ludtke, S.J., . (2010). Mechanism of folding chamber closure in a group II chaper-onin. Nature 463, 379-383 10.1038/nature08701
AI Summary AI Mindmap
PDF(1430 KB)

Accesses

Citations

Detail

Sections
Recommended

/