The role of gut microbiota in the gut-brain axis: current challenges and perspectives

Xiao Chen1, Roshan D’Souza2, Seong-Tshool Hong1()

PDF(552 KB)
PDF(552 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (6) : 403-414. DOI: 10.1007/s13238-013-3017-x
REVIEW
REVIEW

The role of gut microbiota in the gut-brain axis: current challenges and perspectives

  • Xiao Chen1, Roshan D’Souza2, Seong-Tshool Hong1()
Author information +
History +

Abstract

Brain and the gastrointestinal (GI) tract are intimately connected to form a bidirectional neurohumoral communication system. The communication between gut and brain, knows as the gut-brain axis, is so well established that the functional status of gut is always related to the condition of brain. The researches on the gut-brain axis were traditionally focused on the psychological status affecting the function of the GI tract. However, recent evidences showed that gut microbiota communicates with the brain via the gut-brain axis to modulate brain development and behavioral phenotypes. These recent fi ndings on the new role of gut microbiota in the gut-brain axis implicate that gut microbiota could associate with brain functions as well as neurological diseases via the gut-brain axis. To elucidate the role of gut microbiota in the gut-brain axis, precise identification of the composition of microbes constituting gut microbiota is an essential step. However, identifi cation of microbes constituting gut microbiota has been the main technological challenge currently due to massive amount of intestinal microbes and the diffi culties in culture of gut microbes. Current methods for identifi cation of microbes constituting gut microbiota are dependent on omics analysis methods by using advanced high tech equipment. Here, we review the association of gut microbiota with the gut-brain axis, including the pros and cons of the current high throughput methods for identifi cation of microbes constituting gut microbiota to elucidate the role of gut microbiota in the gut-brain axis.

Keywords

gut microbiota / the gut-brain axis / central nervous system / high throughput methods / next-generation sequencings

Cite this article

Download citation ▾
Xiao Chen, Roshan D’Souza, Seong-Tshool Hong. The role of gut microbiota in the gut-brain axis: current challenges and perspectives. Prot Cell, 2013, 4(6): 403‒414 https://doi.org/10.1007/s13238-013-3017-x

References

[1] Albesharat, R., Ehrmann, M.A., Korakli, M., Yazaji, S., and Vogel, R.F. (2011). Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and feces of mothers and their babies. Syst Appl Microbiol 34, 148-155 10.1016/j.syapm.2010.12.001
[2] Andrew, J.W. (2002). The gut-brain axis in childhood developmental disorders. J Pediatr Gastroenterol Nutr 34, S14-17 10.1097/00005176-200205001-00004
[3] Angelakis, E., Million, M., Henry, M., and Raoult, D. (2011). Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry. J Food Sci 76, M568-572 10.1111/j.1750-3841.2011.02369.x
[4] Anhalt, J.P., and Fenselau, C. (1975). Identification of bacteria using mass spectrometry. Anal Chem 47, 219-225 10.1021/ac60352a007
[5] Barbara, G., Brummer, R.J., and Delzenne, N. (2007). Investigating the crosstalk between the gut microbiota and the host: the gut-brain axis. Consensus Report . Warsaw.
[6] Ben, X.M, and Li, J. (2008). Low level of galacto-oligosaccharide in infant formula stimulates growth of intestinal Bifidobacteria and Lactobacilli. World J Gastroenterol 14, 6564-6568 10.3748/wjg.14.6564
[7] Beraza, N., and Trautwein, C. (2008). The Gut-Brain-Liver Axis: A New Option to Treat Obesity and Diabetes? Hepatology 48, 1011-1013 .10.1002/hep.22478
[8] Bercik, P., Collins, S.M., and Verdu, E.F. (2012). Microbes and the gutbrain axis. Neurogastroenterol Motil 224, 405-413 10.1111/j.1365-2982.2012.01906.x
[9] Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., Deng, Y., Blennerhassett, P., Macri, J., McCoy, K.D., . (2011). The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology 141, 599-609 10.1053/j.gastro.2011.04.052
[10] Bishop, R. (2010). Applications of fluorescence in situ hybridization(FISH) in detecting genetic aberrations of medical significance. Biosci Horizons 3, 95-85
[11] Blaut, M., Collins, M.D., Welling, G.W., Doré, J., van, L.J., and de Vos, W. (2004). Molecular methods for the analysis of gut microbiota. Microbial Ecology Health Disease 16, 71-85 10.1080/08910600410032367
[12] Bocci, V. (1992). The neglected organ: bacterial fiora has a crucial immunostimulatory role. Perspect Biol Med 35, 251-260
[13] Brian, W. P., Elizabeth, N., Elin, O., Emrah, K., Frode, N., Simon, T.H., Calvin, P., Mete, C., Christoph, D.R., Brian, J.B., . (2013). Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 17, 141-152 10.1016/j.cmet.2012.12.007
[14] Burcelin, R., Serino, M., Chabo, C., Blasco-Baque, V., and Amar, J. (2011). Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol 4, 257-273 10.1007/s00592-011-0333-6
[15] Cattell, M., Lai, S., Cerny, R., and Medeiros, D.M. (2011). A new mechanistic scenario for the origin and evolution of vertebrate cartilage. PLoS ONE 6, e22474. 10.1371/journal.pone.0022474
[16] Cecilia, J., and Sonja, L. (2010). Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156, 113216-3223
[17] Chong, B.E., Wall, D.B., Lubman, D.M., and Flynn, S.J. (1997). Rapid profiling of E. coli proteins up to 500 kDa from whole cell lysates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 11, 1900-1908 10.1002/(SICI)1097-0231(199711)11:17<1900::AID-RCM95>3.0.CO;2-K
[18] Claesson, M.J., O’ Sullivan, O., Wang, Q., Nikkil?, J., Marchesi, J.R., Smidt, H., De Vos, W.M., Ross R .P.,and O’Toole, P.W. (2009). Comparative analysis of Pyrosequencing and a phylogenetic mi-croarray for exploring microbial community structures in the human distal intestine. PLoS One 4, e6669.10.1371/journal.pone.0006669
[19] Claesson, M.J., Wang, Q., O’Sullivan, O., Greene-Diniz, R., Cole, J.R., Ross, R.P., and O’Toole, P.W. (2010). Comparison of two nextgeneration sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene re-gions. Nucleic Acids Res 38, e200.10.1093/nar/gkq873
[20] Claydon, M.A., Davey, S.N., Edwards, J.V., and Gordon, D.B. (1996). The rapid identification of intact microorganisms using mass spec-trometry. Nat Biotechnol 14, 1584-1586 .10.1038/nbt1196-1584
[21] Collado, M.C., Isolauri, E., Laitinen, K., and Salminen, S. (2008). Dis-tinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88, 894-899
[22] Collins, S.M., Surette, M., and Bercik, P. (2012). The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10, 735-742 .10.1038/nrmicro2876
[23] Cryan, J.F., and Dinan, T.G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neuro-sci 13, 701-712 10.1038/nrn3346
[24] Cryan, J.F., and O’Mahony, S.M., (2011). The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23, 187-192 .10.1111/j.1365-2982.2010.01664.x
[25] Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., and Dinan, T.G. (2008). The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res 43, 164-174 10.1016/j.jpsychires.2008.03.009
[26] Dethlefsen, L., Sue, H., Mitchell, L.S., and Relman, D.A. (2008). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6, e280.10.1371/journal.pbio.0060280
[27] Dumont, M.G., Neufeld, J.D., and Murrell, J.C. (2006). Isotopes as tools for microbial ecologists. Curr Opin Biotech 17, 57-58 10.1016/j.copbio.2006.01.004
[28] Eckburg, P.B., Elisabeth, M.B., Charles, N.B., Elizabeth, P., Dethlefsen, L., Sargent, M., Gill, R.S., Nelson, K.E., and Relman, D.A. (2005). Diversity of the human intestinal microbial flora. Science 308, 1635-1638 10.1126/science.1110591
[29] Zhang, S. M., Tian, F., Huang,Q. F., Zhao, Y.F., Guo, X.K. and Zhang, F. Q. (2011). Bacterial diversity of subgingival plaque in 6 healthy Chinese individuals. Exp Ther Med 2, 1023-1029
[30] Finegold, S.M., Molitoris, D., Song, Y., Liu, C., Vaisanen, M.L., Bolte, E., McTeague, M., Sandler, R., Wexler, H., Marlowe, E.M., . (2002). Gastrointestinal microfiora studies in late-onset autism. Clin Infect Dis 35, S6-16 .10.1086/341914
[31] Fredrik, B., Ruth, E.L., Justin, L.S., Daniel, A.P., and Jeffrey, I.G. (2005). Host-bacterial mutualism in the human intestine. Science 307, 1915-1920 10.1126/science.1104816
[32] Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Sam-uel, B.S., Gordon, J.I, Relman, D.A., Fraser-Liggett, C.M., and Ka-ren, E. (2006). Nelson metagenomic analysis of the human distal gut microbiome. Science 312, 1355-1359 10.1126/science.1124234
[33] Greenblum, S., Turnbaugh, P.J., and Borenstein, E. (2012). Metagen-omic systems biology of the human gut microbiome reveals topological shifts associated with obesity and infiammatory bowel disease. Proc Natl Acad Sci U S A 109, 594-599 10.1073/pnas.1116053109
[34] Greiner, T., Bfickhed, F. (2011). Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab 22, 117-123 10.1016/j.tem.2011.01.002
[35] Hamady, M., Walker, J.J., Harris, J.K., Gold, N.J., and Knight, R. (2008). Error correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5, 235-237 10.1038/nmeth.1184
[36] He, Z., Gentry, T.J., Schadt, C.W., Wu, L., Liebich, J., Chong, S.C., Huang, Z., Wu, W., Gu, B., Jardine, P., . (2007). GeoChip: a comprehensive microarray for investigating biogeochemical, eco-logical and environmental processes. ISME J 1, 67-77 10.1038/ismej.2007.2
[37] Heijtz, R.D., Wang, S., Anuar, F., Qian, Y., Bj?rkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., and Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108, 3047-3052 10.1073/pnas.1010529108
[38] Hernandez-Sanabria, E., Guan, L.L., Laksiri, A., Li, M., Mujibi, D.F., Stothard, P., Moore, S.S., and Leon-Quintero, M.C. (2010). Cor-relation of particular bacterial PCR-denaturing gradient gel electro-phoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits. App Envior Biol 76, 6338-6350 10.1128/AEM.01052-10
[39] Holland, R.D., Wilkes, J.G., Rafii, F., Sutherland, J.B., Persons, C.C., Voorhees, K.J., and Lay J .O. Jr. (1996). Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10, 1227-1232 10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6
[40] Hopkins, M.J., and Sharp, R. (2001). Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48, 198-205 10.1136/gut.48.2.198
[41] Huang, W.E., Stoecker, K., Griffiths, R., Newbold, L., Daims, H., White-ley, A.S., and Wagner, M. (2007). Raman-fish: Combining stable-isotope Raman spectroscopy and fiuorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 9, 1878-1889 10.1111/j.1462-2920.2007.01352.x
[42] Jock, S., and Geider, K. (2004). Molecular differentiation of Erwinia amylovora strains from North America and of two Asian pear patho-gens by analyses of PFGE patterns and hrpN genes. Environ Mi-crobiol 6, 480-490 10.1111/j.1462-2920.2004.00583.x
[43] Kim, P.I., Erickson, B.D., and Cerniglia, C.E. (2005). A membrane-array method to detect specific human intestinal bacteria in fecal samples using reverse transcriptase-PCR and chemiluminescence. J Microbiol Biotechnol 15, 310-320
[44] Krishnamurthy, T., and Ross, P.L. (1996). Rapid identification of bacte-ria by direct matrix-assisted laser desorption/ionization mass spec-trometric analysis of whole cells. Rapid Commun Mass Spectrom 10, 1992-1996 10.1002/(SICI)1097-0231(199612)10:15<1992::AID-RCM789>3.0.CO;2-V
[45] Kurz, C.M., Moosdijk, S.V., Thielecke, H., and Velten, T. (2011). To-wards a cellular multi-parameter analysis platform: fluorescence in situ hybridization (FISH) on microhole-array chips. Conf Proc IEEE Eng Med Biol Soc , 8408-8411
[46] Kuypers, M.M.M., and J?rgensen, B.B. (2007). The future of single-cell environmental microbiology. Environ Microbiol 9, 6-7 10.1111/j.1462-2920.2006.01222_5.x
[47] Lagier, J.C., Million, M., Hugon, P., Armougom, F., and Raoult, D. (2012). Human Gut Microbiota: Repertoire and Variations. Front Cell Infect Microbiol 2, 136.10.3389/fcimb.2012.00136
[48] Lewis, S., and Cochrane, S. (2007). Alteration of sulfate and hydrogen metabolism in the human colon by changing intestinal transit rate. Am J Gastroenterol 102, 624-633 10.1111/j.1572-0241.2006.01020.x
[49] Lotta, N., Reetta, S., and Janne, N. (2013). Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Mi-crobiology 13, 12.10.1186/1471-2180-13-12
[50] Loy, A., Lehner, A., and Lee, N. (2002). Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Mi-crobiol 68, 5064-5081 10.1128/AEM.68.10.5064-5081.2002
[51] Manco, M. (2012). Gut microbiota and developmental programming of the brain: from evidence in behavioral endophenotypes to novel perspective in obesity. Front Cell Inf Microbio 2, 109. 10.3389/fcimb.2012.00109
[52] Migrenne, S., Marsollier, N., Cruciani-Guglielmacci, C., Magnan, C. (2006). Importance of the gut-brain axis in the control of glucose Homeostasis. Curr Opin Pharmacol 6, 592-597 .10.1016/j.coph.2006.08.004
[53] Musso, G., Gambino, M., and Cassader, M. (2010). Obesity, diabetes, and gut microbiota. Diabetes Care 33, 2277-2284 10.2337/dc10-0556
[54] Neufeld, K.M., Kang, N., Bienenstock, J., and Foster, J.A. (2011). Re-duced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23, 255-264 10.1111/j.1365-2982.2010.01620.x
[55] Nordlie, R.C., and Foster, J.D. (1999). Regulation of glucose produc-tion by the liver. Annu Rev Nutr 19, 379-406 10.1146/annurev.nutr.19.1.379
[56] Paliy, O., Kenche, H., Abernathy, F., and Michail, S. (2009). High-throughput quantitative analysis of the human intestinal microbiota with a phylogenetic microarray. Appl Environ Microbiol 75, 3572-3579 .10.1128/AEM.02764-08
[57] Palmer, C., Bik, E.M., and DiGiulio, D.B. (2007). Development of the human infant intestinal microbiota. PLoS Biol 5, e177.10.1371/journal.pbio.0050177
[58] Palmer, C., Bik, E.M., and Eisen, M.B. (2006). Rapid quantitative profil-ing of complex microbial populations. Nucleic Acids Res 34, e5.10.1093/nar/gnj007
[59] Peterson, D.A., Frank, D.N., Pace, N.R., and Gordon, J.I. (2008). Metagenomic approaches for defining the pathogenesis of inflam-matory bowel diseases. Cell Host Microbe 3, 417-427 10.1016/j.chom.2008.05.001
[60] Rakoff, N.S., Paglino, J., Eslami, V.F., Edberg, S., and Medzhitov, R. (2004). Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229-241 10.1016/j.cell.2004.07.002
[61] Sam, A.H., Troke, R.C., Tan, T.M., and Bewick, G.A. (2012). The role of the gut/brain axis in modulating food intake. Neuropharmacology 63, 46-56 .10.1016/j.neuropharm.2011.10.008
[62] Savage, D.C. (1977). Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31, 107-133 10.1146/annurev.mi.31.100177.000543
[63] Shanahan, F. (2002). The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol 16, 915-931 .10.1053/bega.2002.0342
[64] Sintchenko, V., Iredell, J.R., and Gilbert, G.L. (2007). Pathogen profil-ing for disease management and surveillance. Nat Rev Microbiol 5, 464-470 10.1038/nrmicro1656
[65] Sogin, L.M., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M., and Herndl, J.G. (2006). Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc NatAcad Sci U S A 103, 12115-12120 10.1073/pnas.0605127103
[66] Stappenbeck, T.S., Hooper, L.V., and Gordon, J.I. (2001). Commensal host-bacterial relationships in the gut. Science 292, 1115-1118 .10.1126/science.1058709
[67] Stappenbeck, T.S., Hooper, L.V., and Gordon, J.I. (2002). Develop-mental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99, 15451-15455 10.1073/pnas.202604299
[68] Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., Kubo, C., and Koga, Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558, 263-275 .10.1113/jphysiol.2004.063388
[69] Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., . (2008). A core gut microbiome in obese and lean twins. Nature 457, 480-484 10.1038/nature07540
[70] Turnbull, A.V., and Rivier, C.L. (1999). Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of ac-tion. Physiol rev 79, 1-71 .
[71] Walker, J.R., Ediger, J.P., Graff, L.A., Greenfeld, J.M., Clara, I., Lix, L., Rawsthorne, P., Miller, N., Rogala, L., McPhail, C.M., and Bern-stein, C.N. (2008). The Manitoba IBD cohort study: a population-based study of the prevalence of lifetime and 12-month anxiety and mood disorders. Am J Gastroenterol 103, 1989-1997 10.1111/j.1572-0241.2008.01980.x
[72] Wang, P.Y., Caspi, L., Lam, C.K., Chari, M., Li, X., Light, P.E., Gutier-rez-Juarez, R., Ang, M., Schwartz, G.J., and Lam, T.K. (2008). Up-per intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 452, 1012-1016 10.1038/nature06852
[73] Welker, M. (2012). MALDI-TOF MS for identification of microorgan-isms: a new era in clinical microbiological research and diagnosis. In: Hays, J.P., van Leeuwen, W.B. (Eds.), The Role of New Tech-nologies in Medical Microbiological Research and Diagnosis, Ben-tham Science Publishers, Bussum .
[74] Whitehead, W.E., Palsson, O., and Jones, K.R. (2002). Systematic re-view of the comorbidity of irritable bowel syndrome with other disor-ders: what are the causes and implications. Gastroenterology 122, 1140-1156 10.1053/gast.2002.32392
[75] Wook, H.S., Kim, I.S., Lee, J.S., and Chung, K.S. (2011). Culture-Based and Denaturing Gradient Gel Electrophoresis Analysis of the Bacterial Community Structure from the Intestinal Tracts of Earth-worms (Eisenia fetida). J Microbiol Biotechnol 21, 885-892 10.4014/jmb.1009.09041
[76] Wu, L., Thompson, D.K., Liu, X., Fields, M.W., Bagwell, C.E., Tiedje, J.M., and Zhou, J. (2004). Development and evaluation of microar-ray-based whole genome hybridization for detection of microorgan-isms within the context of environmental applications. Environ Sci Technol 38, 6775-6782 10.1021/es049508i
[77] Zhang, H., DiBaise, J.K, Zuccolo, A., Kudrna, D., Braidotti, M., Yu, Y., Parameswaran, P., Crowell, M.D., Wing, R., and Rittmann, B.E. (2009). Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106, 2365-2370 10.1073/pnas.0812600106
[78] Zimmer, C. (2010). How microbes defend and define us. New York Times . 17 July.
[79] Simrén, M., Barbara, G., Flint, H.J., Spiegel, B.M., Spiller, R.C., Vanner, S., Verdu, E.F., Whorwell, P. J., and Zoetendal, E. G. (2013). Intestinal microbiota in functional bowel disorders: a Rome founda-tion report. Gut 62, 159-176 10.1136/gutjnl-2012-302167
[80] Sekirov, I., Russell, S. L., Antunes, L. C. M., and Brett Finlay, B. (2010). Gut Microbiota in Health and Disease. Physiol Rev 90, 859-904 10.1152/physrev.00045.2009
AI Summary AI Mindmap
PDF(552 KB)

Accesses

Citations

Detail

Sections
Recommended

/