Compound screening platform using human induced pluripotent stem cells to identify small molecules that promote chondrogenesis

Sheng-Lian Yang1, Erica Harnish2, Thomas Leeuw3, Uwe Dietz3, Erika Batchelder1, Paul S. Wright2, Jane Peppard2, Paul August2, Cecile Volle-Challier4, Francoise Bono4, Jean-Marc Herbert4, Juan Carlos Izpisua Belmonte1,5()

PDF(445 KB)
PDF(445 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (12) : 934-942. DOI: 10.1007/s13238-012-2107-5
COMMUNICATION
COMMUNICATION

Compound screening platform using human induced pluripotent stem cells to identify small molecules that promote chondrogenesis

  • Sheng-Lian Yang1, Erica Harnish2, Thomas Leeuw3, Uwe Dietz3, Erika Batchelder1, Paul S. Wright2, Jane Peppard2, Paul August2, Cecile Volle-Challier4, Francoise Bono4, Jean-Marc Herbert4, Juan Carlos Izpisua Belmonte1,5()
Author information +
History +

Abstract

Articular cartilage, which is mainly composed of collagen II, enables smooth skeletal movement. Degeneration of collagen II can be caused by various events, such as injury, but degeneration especially increases over the course of normal aging. Unfortunately, the body does not fully repair itself from this type of degeneration, resulting in impaired movement. Microfracture, an articular cartilage repair surgical technique, has been commonly used in the clinic to induce the repair of tissue at damage sites. Mesenchymal stem cells (MSC) have also been used as cell therapy to repair degenerated cartilage. However, the therapeutic outcomes of all these techniques vary in different patients depending on their age, health, lesion size and the extent of damage to the cartilage. The repairing tissues either form fibrocartilage or go into a hypertrophic stage, both of which do not reproduce the equivalent functionality of endogenous hyaline cartilage. One of the reasons for this is inefficient chondrogenesis by endogenous and exogenous MSC. Drugs that promote chondrogenesis could be used to induce self-repair of damaged cartilage as a non-invasive approach alone, or combined with other techniques to greatly assist the therapeutic outcomes. The recent development of human induced pluripotent stem cell (iPSCs), which are able to self-renew and differentiate into multiple cell types, provides a potentially valuable cell resource for drug screening in a “more relevant” cell type. Here we report a screening platform using human iPSCs in a multi-well plate format to identify compounds that could promote chondrogenesis.

Keywords

hESC / hiPSC / chondrogenesis / compound screening platform

Cite this article

Download citation ▾
Sheng-Lian Yang, Erica Harnish, Thomas Leeuw, Uwe Dietz, Erika Batchelder, Paul S. Wright, Jane Peppard, Paul August, Cecile Volle-Challier, Francoise Bono, Jean-Marc Herbert, Juan Carlos Izpisua Belmonte. Compound screening platform using human induced pluripotent stem cells to identify small molecules that promote chondrogenesis. Prot Cell, 2012, 3(12): 934‒942 https://doi.org/10.1007/s13238-012-2107-5

References

[1] Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., . (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotech 26, 1276-1284 .10.1038/nbt.1503
[2] Allendorph, G.P., Read, J.D., Kawakami, Y., Kelber, J.A., Isaacs, M.J., and Choe, S. (2011). Designer TGFβ superfamily ligands with diversified functionality. PLoS ONE 6, e26402.10.1371/journal.pone.0026402
[3] Bulman, S.E., Barron, V., Coleman, C.M., and Barry, F. (2012). Enhancing the mesenchymal stem cell therapeutic response: cell localization and support for cartilage repair. Tissue Eng Part B Rev . (In Press).10.1089/ten.teb.2012.0101
[4] Chanda, D., Kumar, S., and Ponnazhagan, S. (2010). Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in diseases of the skeleton. Journal of Cell Biochem 111, 249-257 .10.1002/jcb.22701
[5] Dowthwaite, G.P., Bishop, J.C., Redman, S.N., Khan, I.M., Rooney, P., Evans, D.J.R., Haughton, L., Bayram, Z., Boyer, S., Thomson, B., . (2004). The surface of articular cartilage contains a progenitor cell population, 889-897 .10.1242/jcs.00912
[6] Eiges, R., Schuldiner, M., Drukker, M., Yanuka, O., Itskovitz-Eldor, J., and Benvenisty, N. (2001). Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol 11, 514-518 .10.1016/S0960-9822(01)00144-0
[7] Ellis, J., and Bhatia, M. (2011). iPSC technology: platform for drug discovery. Clin Pharmacol Ther 89, 639-641 .10.1038/clpt.2011.22
[8] Falanga, V., Iwamoto, S., Chartier, M., Yufit, T., Butmarc, J., kouttab, N., Shrayer, D., and Carson, P. (2007). Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13, 1299-1312 .10.1089/ten.2006.0278
[9] Francis-West, P.H., Abdelfattah, A., Chen, P., Allen, C., Parish, J., Ladher, R., Allen, S., MacPherson, S., Luyten, F.P., and Archer, C.W. (1999). Mechanisms of GDF-5 action during skeletal development. Development 126, 1305-1315 .
[10] Goldring, M.B., and Goldring, S.R. (2007). Osteoarthritis. J Cell Physiol 213, 626-634 .10.1002/jcp.21258
[11] Huang, A., Motlekar, N., Stein, A., Diamond, S., Shore, E., and Mauck, R. (2008). High-throughput screening for modulators of mesenchymal stem cell chondrogenesis. Ann Biomed Eng 36, 1909-1921 .10.1007/s10439-008-9562-4
[12] Inoue, H., and Yamanaka, S. (2011). The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89, 655-661 .10.1038/clpt.2011.38
[13] Jiang, T.X., Yi, J.R., Ying, S.Y., and Chuong, C.M. (1993). Activin enhances chondrogenesis of limb bud cells: stimulation of precartilaginous mesenchymal condensations and expression of NCAM. Dev Biol 155, 545-557 .10.1006/dbio.1993.1051
[14] Johnson, K., Zhu, S., Tremblay, M.S., Payette, J.N., Wang, J., Bouchez, L.C., Meeusen, S., Althage, A., Cho, C.Y., Wu, X., . (2012). A stem cell-based approach to cartilage repair. Science 336, 717-721 .10.1126/science.1215157
[15] Koay, E.J., Hoben, G.M.B., and Athanasiou, K.A.(2007). Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25, 2183-2190 .10.1634/stemcells.2007-0105
[16] Koelling, S., Kruegel, J., Irmer, M., Path, J.R., Sadowski, B., Miro, X., and Miosge, N. (2009). Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4, 324-335 .10.1016/j.stem.2009.01.015
[17] Kuettner, K.E. (1992). Biochemistry of articular cartilage in health and disease. Clin Biochem 25, 155-163 .10.1016/0009-9120(92)90224-G
[18] Laird, P.W., Zijderveld, A., Linders, K., Rudnicki, M.A., Rudolf, J., and Berns, A. (1991). Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19, 4293.10.1093/nar/19.15.4293
[19] Liew, C.G., Draper, J.S., Walsh, J., Moore, H., and Andrews, P.W. (2007). Transient and stable transgene expression in human embryonic stem cells. Stem cells 25, 1521-1528 .10.1634/stemcells.2006-0634
[20] Ludwig, T.E., Bergendahl, V., Levenstein, M.E., Yu, J., Probasco, M.D., and Thomson, J.A. (2006). Feeder-independent culture of human embryonic stem cells. Nat Meth 3, 637-646 .10.1038/nmeth902
[21] Lohmander, L.S., and Roos, E.M. (2007). Clinical update: treating osteoarthritis. The Lancet 370, 2082-2084 .10.1016/S0140-6736(07)61879-0
[22] MacArthur, C.C., Xue, h., Hoof, D.V., Lieu, P.T., Dudas, M., Fontes, A., Swistowski, A., Touboul, T., Seerke, R., Laurent, L.C., . (2012). Chromatin insulator elements block transgene silencing in engineered human embryonic stem cell lines at a defined chromosome 13 locus. Stem Cells Dev 21, 191-205 .10.1089/scd.2011.0163
[23] Majumdar, M.K., Wang, E., and Morris, E.A. (2001). BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol 189, 275-284 .10.1002/jcp.10025
[24] Oldershaw, R.A., Baxter, M.A., Lowe, E.T., Bates, N., Grady, L.M., Soncin, F., Brison, D.R., Hardingham, T.E., and Kimber, S.J. (2010). Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotech 28, 1187-1194 .10.1038/nbt.1683
[25] Oreffo, R., Cooper, C., Mason, C., and Clements, M. (2005). Mesenchymal stem cells. Stem Cell Rev Rep 1, 169-178 .10.1385/SCR:1:2:169
[26] Pridie, K.H. (1955). The development and nature of osteroarthritis of the hip joint. Rheumatism 11, 2-7 .
[27] Sastry, L., Johnson, T., J Hobson, M., B, S., and K, C. (2002). Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 9, 1155-1162 .10.1038/sj.gt.3301731
[28] Siddappa, R., Licht, R., van Blitterswijk, C., and de Boer, J. (2007). Donor variation and loss of multipotency during in vitroexpansion of human mesenchymal stem cells for bone tissue engineering. J Orthop Res 25, 1029-1041 .10.1002/jor.20402
[29] Smith, G.D., Knutsen, G., and Richardson, J.B. (2005). A clinical review of cartilage repair techniques. J Bone Joint Surg Br 87, 445-449 .10.1302/0301-620X.87B4.15971
[30] Steinwaerder, D.S., and Lieber, A. (2000). Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitroand in vivo. Gene Ther 7, 556-567 .10.1038/sj.gt.3301139
[31] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 .10.1016/j.cell.2007.11.019
[32] Toh, W.S., Yang, Z., Liu, H., Heng, B.C., Lee, E.H., and Cao, T. (2007). Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25, 950-960 .10.1634/stemcells.2006-0326
[33] William, R.J., and Harnly, H.W. (2007). Microfrature: indications, technique, and results. Instructional Course Lectures 56, 419-428 .
[34] Woolf, A.D., and Pfleger, B. (2003). Burden of major musculoskeletal conditions. Bulletin WHO , 646-656 .
[35] Yang, H.S., La, W.G., Bhang, S.H., Kim, H.J., Im, G.I., Lee, H., Park, J.H., and Kim, B.S. (2011). Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery. Tissue Eng Part A 17, 1809-1818 .10.1089/ten.tea.2010.0540
[36] Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., . (2007). Induced pluripotent stem cell lines derived from human somatic cells.Science 318, 1917-1920 .10.1126/science.1151526
[37] Zhou, G., Lefebvre, V., Zhang, Z., Eberspaecher, H., and de Crombrugghe, B. (1998). Three high mobility group-like sequences within a 48-base pair enhancer of the Col2a1 gene are required for cartilage-specific expression in vivo. J Biol Chem 273, 14989-14997 .10.1074/jbc.273.24.14989
AI Summary AI Mindmap
PDF(445 KB)

Accesses

Citations

Detail

Sections
Recommended

/