[1] Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. (2007). Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125.
Proc Natl Acad Sci U S A 104, 7500-7505 .
10.1073/pnas.0611551104[2] Chacon, P., and Wriggers, W. (2002). Multi-resolution contour-based fitting of macromolecular structures.
J Mol Biol 317, 375-384 .
10.1006/jmbi.2002.5438[3] Cong, Y., Baker, M.L., Jakana, J., Woolford, D., Miller, E.J., Reissmann, S., Kumar, R.N., Redding-Johanson, A.M., Batth, T.S., and Mukhopadhyay, A. (2010). 4.0-? resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement.
Proc Natl Acad Sci U S A 107, 4967-4972 .
10.1073/pnas.0913774107[4] Cong, Y., and Ludtke, S.J. (2010). Single particle analysis at high resolution.
Methods Enzymol 482, 211-235 .
10.1016/S0076-6879(10)82009-9[5] Gack, M.U., Kirchhofer, A., Shin, Y.C., Inn, K.S., Liang, C., Cui, S., Myong, S., Ha, T., Hopfner, K.P., and Jung, J.U. (2008). Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction.
Proc Natl Acad Sci U S A 105, 16743-16748 .
10.1073/pnas.0804947105[6] Gack, M.U., Nistal-Villan, E., Inn, K.S., Garcia-Sastre, A., and Jung, J.U. (2010). Phosphorylation-mediated negative regulation of RIG-I antiviral activity.
J Virol 84, 3220-3229 .
10.1128/JVI.02241-09[7] Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., and Inoue, S. (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.
Nature 446, 916-920 .
10.1038/nature05732[8] Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K.K., Schlee, M.,
. (2006). 5′-Triphosphate RNA is the ligand for RIG-I.
Science 314, 994-997 .
10.1126/science.1132505[9] Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q.X., and Chen, Z.J. (2011). MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response.
Cell 146, 448-461 .
10.1016/j.cell.2011.06.041[10] Janeway, C.A., Jr., and Medzhitov, R. (2002). Innate immune recognition.
Annu Rev Immunol 20, 197-216 .
10.1146/annurev.immunol.20.083001.084359[11] Jiang, F., Ramanathan, A., Miller, M.T., Tang, G.Q., Gale, M., Jr., Patel, S.S., and M Ramanathan arcotrigiano, J. (2011). Structural basis of RNA recognition and activation by innate immune receptor RIG-I.
Nature 479, 423-427 .
10.1038/nature10537[12] Jiang, X., Kinch, L.N., Brautigam, C.A., Chen, X., Du, F., Grishin, N.V., and Chen, Z.J. (2012). Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response.
Immunity 36, 959-973 .
10.1016/j.immuni.2012.03.022[13] Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T.S., Fujita, T., and Akira, S. (2008). Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5.
J Exp Med 205, 1601-1610 .
10.1084/jem.20080091[14] Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction.
Nat Immunol 6, 981-988 .
10.1038/ni1243[15] Kowalinski, E., Lunardi, T., McCarthy, A.A., Louber, J., Brunel, J., Grigorov, B., Gerlier, D., and Cusack, S. (2011). Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA.
Cell 147, 423-435 .
10.1016/j.cell.2011.09.039[16] Kumar, H., Kawai, T., and Akira, S. (2009). Pathogen recognition in the innate immune response.
Biochem J 420, 1-16 .
10.1042/BJ20090272[17] Leung, D.W., and Amarasinghe, G.K. (2012). Structural insights into RNA recognition and activation of RIG-I-like receptors.
Curr Opin Struct Biol 22, 297-303
10.1016/j.sbi.2012.03.011[18] Liu, H.M., Loo, Y.M., Horner, S.M., Zornetzer, G.A., Katze, M.G., and Gale, M., Jr. (2012). The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity.
Cell Host Microbe 11, 528-537 .
10.1016/j.chom.2012.04.006[19] Lu, C., Ranjith-Kumar, C.T., Hao, L., Kao, C.C., and Li, P. (2011). Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5′ triphosphate.
Nucleic Acids Res 39, 1565-1575 .
10.1093/nar/gkq974[20] Lu, C., Xu, H., Ranjith-Kumar, C.T., Brooks, M.T., Hou, T.Y., Hu, F., Herr, A.B., Strong, R.K., Kao, C.C., and Li, P. (2010). The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain.
Structure 18, 1032-1043 .
10.1016/j.str.2010.05.007[21] Ludtke, S.J., Baldwin, P.R., and Chiu, W. (1999). EMAN: semiautomated software for high-resolution single-particle reconstructions.
J Struct Biol 128, 82-97 .
10.1006/jsbi.1999.4174[22] Ludtke, S.J., Jakana, J., Song, J.L., Chuang, D.T., and Chiu, W. (2001). A 11.5 A single particle reconstruction of GroEL using EMAN.
J Mol Biol 314, 253-262 .
10.1006/jmbi.2001.5133[23] Luo, D., Kohlway, A., Vela, A., and Pyle, A.M. (2012). Visualizing the Determinants of Viral RNA Recognition by Innate Immune Sensor RIG-I.
Structure 20, 1983-1988 .
10.1016/j.str.2012.08.029[24] Maharaj, N.P., Wies, E., Stoll, A., and Gack, M.U. (2012). Conventional protein kinase C-alpha (PKC-alpha) and PKC-beta negatively regulate RIG-I antiviral signal transduction.
J Virol 86, 1358-1371 .
10.1128/JVI.06543-11[25] Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus.
Nature 437, 1167-1172 .
10.1038/nature04193[26] Nistal-Villan, E., Gack, M.U., Martinez-Delgado, G., Maharaj, N.P., Inn, K.S., Yang, H., Wang, R., Aggarwal, A.K., Jung, J.U., and Garcia-Sastre, A. (2010). Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production.
J Biol Chem 285, 20252-20261 .
10.1074/jbc.M109.089912[27] Oh, S.D., Lao, J.P., Hwang, P.Y., Taylor, A.F., Smith, G.R., and Hunter, N. (2007). BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules.
Cell 130, 259-272 .
10.1016/j.cell.2007.05.035[28] Oshiumi, H., Matsumoto, M., Hatakeyama, S., and Seya, T. (2009). Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection.
J Biol Chem 284, 807-817 .
10.1074/jbc.M804259200[29] Oshiumi, H., Miyashita, M., Inoue, N., Okabe, M., Matsumoto, M., and Seya, T. (2010). The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection.
Cell Host Microbe 8, 496-509 .
10.1016/j.chom.2010.11.008[30] Pichlmair, A., Schulz, O., Tan, C.P., Naslund, T.I., Liljestrom, P., Weber, F., and Reis e Sousa, C. (2006). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates.
Science 314, 997-1001 .
10.1126/science.1132998[31] Saito, T., Hirai, R., Loo, Y.M., Owen, D., Johnson, C.L., Sinha, S.C., Akira, S., Fujita, T., and Gale Jr, M. (2007). Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2.
Science′s STKE 104, 582.
[32] Schlee, M., Roth, A., Hornung, V., Hagmann, C.A., Wimmenauer, V., Barchet, W., Coch, C., Janke, M., Mihailovic, A., Wardle, G.,
. (2009). Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus.
Immunity 31, 25-34 .
10.1016/j.immuni.2009.05.008[33] Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., Gale, M., Jr., Inagaki, F., and Fujita, T. (2008). Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses.
Mol Cell 29, 428-440 .
10.1016/j.molcel.2007.11.028[34] Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflammation.
Cell 140, 805-820 .
10.1016/j.cell.2010.01.022[35] Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., and Ludtke, S.J. (2007). EMAN2: an extensible image processing suite for electron microscopy.
J Struct Biol 157, 38-46 .
10.1016/j.jsb.2006.05.009[36] Wriggers, W. (2012). Conventions and workflows for using Situs.
Acta Crystallogr D Biol Crystallogr 68, 344-351 .
10.1107/S0907444911049791[37] Wriggers, W., Milligan, R.A., and McCammon, J.A. (1999). Situs: A package for docking crystal structures into low-resolution maps from electron microscopy.
J Struct Biol 125, 185-195 .
10.1006/jsbi.1998.4080[38] Xu, L.G., Wang, Y.Y., Han, K.J., Li, L.Y., Zhai, Z., and Shu, H.B. (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling.
Mol Cell 19, 727-740 .
10.1016/j.molcel.2005.08.014[39] Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y.M., Gale, M.,Jr., Akira, S.,
. (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity.
J Immunol 175, 2851-2858 .
[40] Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.
Nat Immunol 5, 730-737 .
10.1038/ni1087[41] Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., and Chen, Z.J. (2010). Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity.
Cell 141, 315-330 .
10.1016/j.cell.2010.03.029