Structural and biochemical studies of RIG-I antiviral signaling

Miao Feng1, Zhanyu Ding2, Liang Xu1, Liangliang Kong2, Wenjia Wang1, Shi Jiao1, Zhubing Shi1, Mark I. Greene3, Yao Cong2(), Zhaocai Zhou1()

PDF(1214 KB)
PDF(1214 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (2) : 142-154. DOI: 10.1007/s13238-012-2088-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural and biochemical studies of RIG-I antiviral signaling

  • Miao Feng1, Zhanyu Ding2, Liang Xu1, Liangliang Kong2, Wenjia Wang1, Shi Jiao1, Zhubing Shi1, Mark I. Greene3, Yao Cong2(), Zhaocai Zhou1()
Author information +
History +

Abstract

Retinoic acid-inducible gene I (RIG-I) is an important pattern recognition receptor that detects viral RNA and triggers the production of type-I interferons through the downstream adaptor MAVS (also called IPS-1, CARDIF, or VISA). A series of structural studies have elaborated some of the mechanisms of dsRNA recognition and activation of RIG-I. Recent studies have proposed that K63-linked ubiquitination of, or unanchored K63-linked polyubiquitin binding to RIG-I positively regulates MAVS-mediated antiviral signaling. Conversely phosphorylation of RIG-I appears to play an inhibitory role in controlling RIG-I antiviral signal transduction. Here we performed a combined structural and biochemical study to further define the regulatory features of RIG-I signaling. ATP and dsRNA binding triggered dimerization of RIG-I with conformational rearrangements of the tandem CARD domains. Full length RIG-I appeared to form a complex with dsRNA in a 2:2 molar ratio. Compared with the previously reported crystal structures of RIG-I in inactive state, our electron microscopic structure of full length RIG-I in complex with blunt-ended dsRNA, for the first time, revealed an exposed active conformation of the CARD domains. Moreover, we found that purified recombinant RIG-I proteins could bind to the CARD domain of MAVS independently of dsRNA, while S8E and T170E phosphorylation-mimicking mutants of RIG-I were defective in binding E3 ligase TRIM25, unanchored K63-linked polyubiquitin, and MAVS regardless of dsRNA. These findings suggested that phosphorylation of RIG inhibited downstream signaling by impairing RIG-I binding with polyubiquitin and its interaction with MAVS.

Keywords

RIG-I / MAVS / antiviral signaling / polyubiquitin / phosphorylation

Cite this article

Download citation ▾
Miao Feng, Zhanyu Ding, Liang Xu, Liangliang Kong, Wenjia Wang, Shi Jiao, Zhubing Shi, Mark I. Greene, Yao Cong, Zhaocai Zhou. Structural and biochemical studies of RIG-I antiviral signaling. Prot Cell, 2013, 4(2): 142‒154 https://doi.org/10.1007/s13238-012-2088-4

References

[1] Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. (2007). Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A 104, 7500-7505 .10.1073/pnas.0611551104
[2] Chacon, P., and Wriggers, W. (2002). Multi-resolution contour-based fitting of macromolecular structures. J Mol Biol 317, 375-384 .10.1006/jmbi.2002.5438
[3] Cong, Y., Baker, M.L., Jakana, J., Woolford, D., Miller, E.J., Reissmann, S., Kumar, R.N., Redding-Johanson, A.M., Batth, T.S., and Mukhopadhyay, A. (2010). 4.0-? resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci U S A 107, 4967-4972 .10.1073/pnas.0913774107
[4] Cong, Y., and Ludtke, S.J. (2010). Single particle analysis at high resolution. Methods Enzymol 482, 211-235 .10.1016/S0076-6879(10)82009-9
[5] Gack, M.U., Kirchhofer, A., Shin, Y.C., Inn, K.S., Liang, C., Cui, S., Myong, S., Ha, T., Hopfner, K.P., and Jung, J.U. (2008). Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc Natl Acad Sci U S A 105, 16743-16748 .10.1073/pnas.0804947105
[6] Gack, M.U., Nistal-Villan, E., Inn, K.S., Garcia-Sastre, A., and Jung, J.U. (2010). Phosphorylation-mediated negative regulation of RIG-I antiviral activity. J Virol 84, 3220-3229 .10.1128/JVI.02241-09
[7] Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., and Inoue, S. (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920 .10.1038/nature05732
[8] Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K.K., Schlee, M., . (2006). 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994-997 .10.1126/science.1132505
[9] Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q.X., and Chen, Z.J. (2011). MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448-461 .10.1016/j.cell.2011.06.041
[10] Janeway, C.A., Jr., and Medzhitov, R. (2002). Innate immune recognition. Annu Rev Immunol 20, 197-216 .10.1146/annurev.immunol.20.083001.084359
[11] Jiang, F., Ramanathan, A., Miller, M.T., Tang, G.Q., Gale, M., Jr., Patel, S.S., and M Ramanathan arcotrigiano, J. (2011). Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479, 423-427 .10.1038/nature10537
[12] Jiang, X., Kinch, L.N., Brautigam, C.A., Chen, X., Du, F., Grishin, N.V., and Chen, Z.J. (2012). Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response. Immunity 36, 959-973 .10.1016/j.immuni.2012.03.022
[13] Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T.S., Fujita, T., and Akira, S. (2008). Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205, 1601-1610 .10.1084/jem.20080091
[14] Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6, 981-988 .10.1038/ni1243
[15] Kowalinski, E., Lunardi, T., McCarthy, A.A., Louber, J., Brunel, J., Grigorov, B., Gerlier, D., and Cusack, S. (2011). Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147, 423-435 .10.1016/j.cell.2011.09.039
[16] Kumar, H., Kawai, T., and Akira, S. (2009). Pathogen recognition in the innate immune response. Biochem J 420, 1-16 .10.1042/BJ20090272
[17] Leung, D.W., and Amarasinghe, G.K. (2012). Structural insights into RNA recognition and activation of RIG-I-like receptors. Curr Opin Struct Biol 22, 297-303 10.1016/j.sbi.2012.03.011
[18] Liu, H.M., Loo, Y.M., Horner, S.M., Zornetzer, G.A., Katze, M.G., and Gale, M., Jr. (2012). The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 11, 528-537 .10.1016/j.chom.2012.04.006
[19] Lu, C., Ranjith-Kumar, C.T., Hao, L., Kao, C.C., and Li, P. (2011). Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5′ triphosphate. Nucleic Acids Res 39, 1565-1575 .10.1093/nar/gkq974
[20] Lu, C., Xu, H., Ranjith-Kumar, C.T., Brooks, M.T., Hou, T.Y., Hu, F., Herr, A.B., Strong, R.K., Kao, C.C., and Li, P. (2010). The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18, 1032-1043 .10.1016/j.str.2010.05.007
[21] Ludtke, S.J., Baldwin, P.R., and Chiu, W. (1999). EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128, 82-97 .10.1006/jsbi.1999.4174
[22] Ludtke, S.J., Jakana, J., Song, J.L., Chuang, D.T., and Chiu, W. (2001). A 11.5 A single particle reconstruction of GroEL using EMAN. J Mol Biol 314, 253-262 .10.1006/jmbi.2001.5133
[23] Luo, D., Kohlway, A., Vela, A., and Pyle, A.M. (2012). Visualizing the Determinants of Viral RNA Recognition by Innate Immune Sensor RIG-I. Structure 20, 1983-1988 .10.1016/j.str.2012.08.029
[24] Maharaj, N.P., Wies, E., Stoll, A., and Gack, M.U. (2012). Conventional protein kinase C-alpha (PKC-alpha) and PKC-beta negatively regulate RIG-I antiviral signal transduction. J Virol 86, 1358-1371 .10.1128/JVI.06543-11
[25] Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167-1172 .10.1038/nature04193
[26] Nistal-Villan, E., Gack, M.U., Martinez-Delgado, G., Maharaj, N.P., Inn, K.S., Yang, H., Wang, R., Aggarwal, A.K., Jung, J.U., and Garcia-Sastre, A. (2010). Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production. J Biol Chem 285, 20252-20261 .10.1074/jbc.M109.089912
[27] Oh, S.D., Lao, J.P., Hwang, P.Y., Taylor, A.F., Smith, G.R., and Hunter, N. (2007). BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130, 259-272 .10.1016/j.cell.2007.05.035
[28] Oshiumi, H., Matsumoto, M., Hatakeyama, S., and Seya, T. (2009). Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284, 807-817 .10.1074/jbc.M804259200
[29] Oshiumi, H., Miyashita, M., Inoue, N., Okabe, M., Matsumoto, M., and Seya, T. (2010). The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 8, 496-509 .10.1016/j.chom.2010.11.008
[30] Pichlmair, A., Schulz, O., Tan, C.P., Naslund, T.I., Liljestrom, P., Weber, F., and Reis e Sousa, C. (2006). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997-1001 .10.1126/science.1132998
[31] Saito, T., Hirai, R., Loo, Y.M., Owen, D., Johnson, C.L., Sinha, S.C., Akira, S., Fujita, T., and Gale Jr, M. (2007). Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Science′s STKE 104, 582.
[32] Schlee, M., Roth, A., Hornung, V., Hagmann, C.A., Wimmenauer, V., Barchet, W., Coch, C., Janke, M., Mihailovic, A., Wardle, G., . (2009). Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31, 25-34 .10.1016/j.immuni.2009.05.008
[33] Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., Gale, M., Jr., Inagaki, F., and Fujita, T. (2008). Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29, 428-440 .10.1016/j.molcel.2007.11.028
[34] Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflammation. Cell 140, 805-820 .10.1016/j.cell.2010.01.022
[35] Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., and Ludtke, S.J. (2007). EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157, 38-46 .10.1016/j.jsb.2006.05.009
[36] Wriggers, W. (2012). Conventions and workflows for using Situs. Acta Crystallogr D Biol Crystallogr 68, 344-351 .10.1107/S0907444911049791
[37] Wriggers, W., Milligan, R.A., and McCammon, J.A. (1999). Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. J Struct Biol 125, 185-195 .10.1006/jsbi.1998.4080
[38] Xu, L.G., Wang, Y.Y., Han, K.J., Li, L.Y., Zhai, Z., and Shu, H.B. (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19, 727-740 .10.1016/j.molcel.2005.08.014
[39] Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y.M., Gale, M.,Jr., Akira, S., . (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175, 2851-2858 .
[40] Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5, 730-737 .10.1038/ni1087
[41] Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., and Chen, Z.J. (2010). Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315-330 .10.1016/j.cell.2010.03.029
AI Summary AI Mindmap
PDF(1214 KB)

Accesses

Citations

Detail

Sections
Recommended

/