Aptamer-based molecular imaging

Tianjiao Wang(), Judhajeet Ray

PDF(428 KB)
PDF(428 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (10) : 739-754. DOI: 10.1007/s13238-012-2072-z
REVIEW
REVIEW

Aptamer-based molecular imaging

  • Tianjiao Wang(), Judhajeet Ray
Author information +
History +

Abstract

Molecular imaging has greatly advanced basic biology and translational medicine through visualization and quantification of single/multiple molecular events temporally and spatially in a cellular context and in living organisms. Aptamers, short single-stranded nucleic acids selected in vitro to bind a broad range of target molecules avidly and specifically, are ideal molecular recognition elements for probe development in molecular imaging. This review summarizes the current state of aptamer-based biosensor development (probe design and imaging modalities) and their application in imaging small molecules, nucleic acids and proteins mostly in a cellular context with some animal studies. The article is concluded with a brief discussion on the perspective of aptamer-based molecular imaging.

Keywords

aptamer / imaging / small molecule / nucleic acid / protein / biosensor

Cite this article

Download citation ▾
Tianjiao Wang, Judhajeet Ray. Aptamer-based molecular imaging. Prot Cell, 2012, 3(10): 739‒754 https://doi.org/10.1007/s13238-012-2072-z

References

[1] Austin, R.J., Xia, T., Ren, J., Takahashi, T.T., and Roberts, R.W. (2002). Designed arginine-rich RNA-binding peptides with picomolar affinity. J Am Chem Soc 124, 10966-10967 .10.1021/ja026610b
[2] Babendure, J.R., Adams, S.R., and Tsien, R.Y. (2003). Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc 125, 14716-14717 .10.1021/ja037994o
[3] Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P.W., Langer, R., and Farokhzad, O.C. (2007). Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7, 3065-3070 .10.1021/nl071546n
[4] Bao, G., Rhee, W.J., and Tsourkas, A. (2009). Fluorescent probes for live-cell RNA detection. Annu Rev Biomed Eng 11, 25-47 .10.1146/annurev-bioeng-061008-124920
[5] Bermejo, C., Ewald, J.C., Lanquar, V., Jones, A.M., and Frommer, W.B. (2011). In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast. Biochem J 438, 1-10 .10.1042/BJ20110428
[6] Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S.M., Singer, R.H., and Long, R.M. (1998). Localization of ASH1 mRNA particles in living yeast. Mol Cell 2, 437-445 .10.1016/S1097-2765(00)80143-4
[7] Bi, J., Tsai, N.P., Lin, Y.P., Loh, H.H., and Wei, L.N. (2006). Axonal mRNA transport and localized translational regulation of kappa-opioid receptor in primary neurons of dorsal root ganglia. Proc Natl Acad Sci U S A 103, 19919-19924 .10.1073/pnas.0607394104
[8] Brengues, M., Teixeira, D., and Parker, R. (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486-489 .10.1126/science.1115791
[9] Brodsky, A.S., and Silver, P.A. (2000). Pre-mRNA processing factors are required for nuclear export. RNA 6, 1737-1749 .10.1017/S1355838200001059
[10] Brody, E.N., Gold, L., Lawn, R.M., Walker, J.J., and Zichi, D. (2010). High-content affinity-based proteomics: unlocking protein biomarker discovery. Expert Rev Mol Diagn 10, 1013-1022 .10.1586/erm.10.89
[11] Burke, D.H., Ozerova, N.D., and Nilsen-Hamilton, M. (2002). Allosteric hammerhead ribozyme TRAPs. Biochemistry 41, 6588-6594 .10.1021/bi0201522
[12] Charlton, J., Sennello, J., and Smith, D. (1997). In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 4, 809-816 .10.1016/S1074-5521(97)90114-9
[13] Chen, K., and Chen, X. (2010). Design and development of molecular imaging probes. Curr Top Med Chem 10, 1227-1236 .10.2174/156802610791384225
[14] Chen, L.Q., Xiao, S.J., Hu, P.P., Peng, L., Ma, J., Luo, L.F., Li, Y.F., and Huang, C.Z. (2012). Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics. Anal Chem 84, 3099-3110 .10.1021/ac202810b
[15] Chen, L.Q., Xiao, S.J., Peng, L., Wu, T., Ling, J., Li, Y.F., and Huang, C.Z. (2010). Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis. J Phys Chem B 114, 3655-3659 .10.1021/jp9104618
[16] Chubb, J.R., Trcek, T., Shenoy, S.M., and Singer, R.H. (2006). Transcriptional pulsing of a developmental gene. Curr Biol 16, 1018-1025 .10.1016/j.cub.2006.03.092
[17] Cong, X., and Nilsen-Hamilton, M. (2005). Allosteric aptamers: targeted reversibly attenuated probes. Biochemistry 44, 7945-7954 .10.1021/bi047507x
[18] Constantin, T.P., Silva, G.L., Robertson, K.L., Hamilton, T.P., Fague, K., Waggoner, A.S., and Armitage, B.A. (2008). Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules. Org Lett 10, 1561-1564 .10.1021/ol702920e
[19] Daigle, N., and Ellenberg, J. (2007). LambdaN-GFP: an RNA reporter system for live-cell imaging. Nat Methods 4, 633-636 .10.1038/nmeth1065
[20] Darzacq, X., Shav-Tal, Y., de Turris, V., Brody, Y., Shenoy, S.M., Phair, R.D., and Singer, R.H. (2007). In vivo dynamics of RNA polymerase II transcription. Nat Struct Mol Biol 14, 796-806 .10.1038/nsmb1280
[21] Das, B., Das, S., and Sherman, F. (2006). Mutant LYS2 mRNAs retained and degraded in the nucleus of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 103, 10871-10876 .10.1073/pnas.0604562103
[22] Dictenberg, J.B., Swanger, S.A., Antar, L.N., Singer, R.H., and Bassell, G.J. (2008). A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell 14, 926-939 .10.1016/j.devcel.2008.04.003
[23] Dynes, J.L., and Steward, O. (2007). Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. J Comp Neurol 500, 433-447 .10.1002/cne.21189
[24] Ellington, A.D., and Szostak, J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822 .10.1038/346818a0
[25] Fang, Y., and Spector, D.L. (2007). Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17, 818-823 .10.1016/j.cub.2007.04.005
[26] Fusco, D., Accornero, N., Lavoie, B., Shenoy, S.M., Blanchard, J.M., Singer, R.H., and Bertrand, E. (2003). Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 13, 161-167 .10.1016/S0960-9822(02)01436-7
[27] Hicke, B.J., Stephens, A.W., Gould, T., Chang, Y.F., Lynott, C.K., Heil, J., Borkowski, S., Hilger, C.S., Cook, G., Warren, S.,. (2006). Tumor targeting by an aptamer. J Nucl Med 47, 668-678 .
[28] Hong, H., Goel, S., Zhang, Y., and Cai, W. (2011). Molecular imaging with nucleic acid aptamers. Curr Med Chem 18, 4195-4205 .10.2174/092986711797189691
[29] Hwang do, W., Ko, H.Y., Lee, J.H., Kang, H., Ryu, S.H., Song, I.C., Lee, D.S., and Kim, S. (2010). A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51, 98-105 .10.2967/jnumed.109.069880
[30] Iliuk, A.B., Hu, L., and Tao, W.A. (2011). Aptamer in bioanalytical applications. Anal Chem 83, 4440-4452 .10.1021/ac201057w
[31] Itzkovitz, S., and van Oudenaarden, A. (2011). Validating transcripts with probes and imaging technology. Nat Methods 8, S12-19 .10.1038/nmeth.1573
[32] Janicki, S.M., Tsukamoto, T., Salghetti, S.E., Tansey, W.P., Sachidanandam, R., Prasanth, K.V., Ried, T., Shav-Tal, Y., Bertrand, E., Singer, R.H.,. (2004). From silencing to gene expression: real-time analysis in single cells. Cell 116, 683-698 .10.1016/S0092-8674(04)00171-0
[33] Jhaveri, S., Rajendran, M., and Ellington, A.D. (2000). In vitro selection of signaling aptamers. Nat Biotechnol 18, 1293-1297 .10.1038/82414
[34] Kang, W.J., Chae, J.R., Cho, Y.L., Lee, J.D., and Kim, S. (2009a). Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. Small 5, 2519-2522 .10.1002/smll.200900848
[35] Kang, W.J., Ko, M.H., Lee, D.S., and Kim, S. (2009b). Bioimaging of geographically adjacent proteins in a single cell by quantum dot-based fluorescent resonance energy transfer. Proteomics Clin Appl 3, 1383-1388 .
[36] Keefe, A.D., Pai, S., and Ellington, A. (2010). Aptamers as therapeutics. Nat Rev Drug Discov 9, 537-550 .10.1038/nrd3141
[37] Kim, D., Jeong, Y.Y., and Jon, S. (2010). A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4, 3689-3696 .10.1021/nn901877h
[38] Knopp, D., Tang, D., and Niessner, R. (2009). Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal Chim Acta 647, 14-30 .10.1016/j.aca.2009.05.037
[39] Ko, M.H., Kim, S., Kang, W.J., Lee, J.H., Kang, H., Moon, S.H., Hwang do, W., Ko, H.Y., and Lee, D.S. (2009). In vitro derby imaging of cancer biomarkers using quantum dots. Small 5, 1207-1212 .
[40] Kolpashchikov, D.M. (2005). Binary malachite green aptamer for fluorescent detection of nucleic acids. J Am Chem Soc 127, 12442-12443 .10.1021/ja0529788
[41] Lange, S., Katayama, Y., Schmid, M., Burkacky, O., Brauchle, C., Lamb, D.C., and Jansen, R.P. (2008). Simultaneous transport of different localized mRNA species revealed by live-cell imaging. Traffic 9, 1256-1267 .10.1111/j.1600-0854.2008.00763.x
[42] Lee, J., Lee, K.H., Jeon, J., Dragulescu-Andrasi, A., Xiao, F., and Rao, J. (2010). Combining SELEX screening and rational design to develop light-up fluorophore-RNA aptamer pairs for RNA tagging. ACS Chem Biol 5, 1065-1074 .10.1021/cb1001894
[43] Li, W., Yang, X., Wang, K., Tan, W., He, Y., Guo, Q., Tang, H., and Liu, J. (2008). Real-time imaging of protein internalization using aptamer conjugates. Anal Chem 80, 5002-5008 .10.1021/ac800930q
[44] Liang, Y., Zhang, Z., Wei, H., Hu, Q., Deng, J., Guo, D., Cui, Z., and Zhang, X.E. (2011). Aptamer beacons for visualization of endogenous protein HIV-1 reverse transcriptase in living cells. Biosens Bioelectron 28, 270-276 .10.1016/j.bios.2011.07.031
[45] Lim, F., and Peabody, D.S. (1994). Mutations that increase the affinity of a translational repressor for RNA. Nucleic Acids Res 22, 3748-3752 .10.1093/nar/22.18.3748
[46] Lopez-Colon, D., Jimenez, E., You, M., Gulbakan, B., and Tan, W. (2011). Aptamers: turning the spotlight on cells. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3, 328-340 .10.1002/wnan.133
[47] Massoud, T.F., and Gambhir, S.S. (2003). Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17, 545-580 .10.1101/gad.1047403
[48] Muramoto, T., Cannon, D., Gierlinski, M., Corrigan, A., Barton, G.J., and Chubb, J.R. (2012). Live imaging of nascent RNA dynamics reveals distinct types of transcriptional pulse regulation. Proc Natl Acad Sci U S A 109, 7350-7355 .10.1073/pnas.1117603109
[49] Murata, A., Sato, S., Kawazoe, Y., and Uesugi, M. (2011). Small-molecule fluorescent probes for specific RNA targets. Chem Commun (Camb) 47, 4712-4714 .10.1039/c1cc10393h
[50] Nevo-Dinur, K., Nussbaum-Shochat, A., Ben-Yehuda, S., and Amster-Choder, O. (2011). Translation-independent localization of mRNA in E. coli. Science 331, 1081-1084 .10.1126/science.1195691
[51] Ng, K., Daigle, N., Bancaud, A., Ohhata, T., Humphreys, P., Walker, R., Ellenberg, J., and Wutz, A. (2011). A system for imaging the regulatory noncoding Xist RNA in living mouse embryonic stem cells. Mol Biol Cell 22, 2634-2645 .10.1091/mbc.E11-02-0146
[52] Nielsen, L.J., Olsen, L.F., and Ozalp, V.C. (2010). Aptamers embedded in polyacrylamide nanoparticles: a tool for in vivo metabolite sensing. ACS Nano 4, 4361-4370 .10.1021/nn100635j
[53] Nutiu, R., and Li, Y. (2005). Aptamers with fluorescence-signaling properties. Methods 37, 16-25 .10.1016/j.ymeth.2005.07.001
[54] Oguro, A., Ohtsu, T., Svitkin, Y.V., Sonenberg, N., and Nakamura, Y. (2003). RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis. RNA 9, 394-407 .10.1261/rna.2161303
[55] Ohtsuka, K., Sato, S., Sato, Y., Sota, K., Ohzawa, S., Matsuda, T., Takemoto, K., Takamune, N., Juskowiak, B., Nagai, T.,. (2012). Fluorescence imaging of potassium ions in living cells using a fluorescent probe based on a thrombin binding aptamer- peptide conjugate. Chem Commun (Camb) 48, 4740-4742 .10.1039/c2cc30536d
[56] Ozalp, V.C., Nielsen, L.J., and Olsen, L.F. (2010a). An aptamer-based nanobiosensor for real-time measurements of ATP dynamics. Chembiochem 11, 2538-2541 .10.1002/cbic.201000500
[57] Ozalp, V.C., Pedersen, T.R., Nielsen, L.J., and Olsen, L.F. (2010b). Time-resolved measurements of intracellular ATP in the yeast Saccharomyces cerevisiae using a new type of nanobiosensor. J Biol Chem 285, 37579-37588 .10.1074/jbc.M110.155119
[58] Paige, J.S., Nguyen-Duc, T., Song, W., and Jaffrey, S.R. (2012). Fluorescence imaging of cellular metabolites with RNA. Science 335, 1194.10.1126/science.1218298
[59] Paige, J.S., Wu, K.Y., and Jaffrey, S.R. (2011). RNA mimics of green fluorescent protein. Science 333, 642-646 .10.1126/science.1207339
[60] Palmer, A.E., Qin, Y., Park, J.G., and McCombs, J.E. (2011). Design and application of genetically encoded biosensors. Trends Biotechnol 29, 144-152 .10.1016/j.tibtech.2010.12.004
[61] Pysz, M.A., Gambhir, S.S., and Willmann, J.K. (2010). Molecular imaging: current status and emerging strategies. Clin Radiol 65, 500-516 .10.1016/j.crad.2010.03.011
[62] Rackham, O., and Brown, C.M. (2004). Visualization of RNA-protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J 23, 3346-3355 .10.1038/sj.emboj.7600341
[63] Rook, M.S., Lu, M., and Kosik, K.S. (2000). CaMKIIalpha 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J Neurosci 20, 6385-6393 .
[64] Sando, S., Narita, A., Hayami, M., and Aoyama, Y. (2008). Transcription monitoring using fused RNA with a dye-binding light-up aptamer as a tag: a blue fluorescent RNA. Chem Commun (Camb) , 3858-3860 .10.1039/b808449a
[65] Schmidt, U., Basyuk, E., Robert, M.C., Yoshida, M., Villemin, J.P., Auboeuf, D., Aitken, S., and Bertrand, E. (2011). Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. J Cell Biol 193, 819-829 .10.1083/jcb.201009012
[66] Shav-Tal, Y., Darzacq, X., Shenoy, S.M., Fusco, D., Janicki, S.M., Spector, D.L., and Singer, R.H. (2004). Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797-1800 .10.1126/science.1099754
[67] Shi, H., He, X., Wang, K., Wu, X., Ye, X., Guo, Q., Tan, W., Qing, Z., Yang, X., and Zhou, B. (2011). Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci U S A 108, 3900-3905 .10.1073/pnas.1016197108
[68] Shi, H., Tang, Z., Kim, Y., Nie, H., Huang, Y.F., He, X., Deng, K., Wang, K., and Tan, W. (2010). In vivo fluorescence imaging of tumors using molecular aptamers generated by cell-SELEX. Chem Asian J 5, 2209-2213 .10.1002/asia.201000242
[69] Shui, B., Ozer, A., Zipfel, W., Sahu, N., Singh, A., Lis, J.T., Shi, H., and Kotlikoff, M.I. (2012). RNA aptamers that functionally interact with green fluorescent protein and its derivatives. Nucleic Acids Res 40, e39.10.1093/nar/gkr1264
[70] Smolander, O.P., Kandhavelu, M., Mannerstrom, H., Lihavainen, E., Kalaichelvan, S., Healy, S., Yli-Harja, O., Karp, M., and Ribeiro, A.S. (2011). Cell-to-cell diversity in protein levels of a gene driven by a tetracycline inducible promoter. BMC Mol Biol 12, 21.10.1186/1471-2199-12-21
[71] Sparano, B.A., and Koide, K. (2007). Fluorescent sensors for specific RNA: a general paradigm using chemistry and combinatorial biology. J Am Chem Soc 129, 4785-4794 .10.1021/ja070111z
[72] Stojanovic, M.N., and Kolpashchikov, D.M. (2004). Modular aptameric sensors. J Am Chem Soc 126, 9266-9270 .10.1021/ja032013t
[73] Suhling, K., French, P.M., and Phillips, D. (2005). Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4, 13-22 .10.1039/b412924p
[74] Toomre, D., and Bewersdorf, J. (2010). A new wave of cellular imaging. Annu Rev Cell Dev Biol 26, 285-314 .10.1146/annurev-cellbio-100109-104048
[75] Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510 .10.1126/science.2200121
[76] Valencia-Burton, M., McCullough, R.M., Cantor, C.R., and Broude, N.E. (2007). RNA visualization in live bacterial cells using fluorescent protein complementation. Nat Methods 4, 421-427 .
[77] Valencia-Burton, M., Shah, A., Sutin, J., Borogovac, A., McCullough, R.M., Cantor, C.R., Meller, A., and Broude, N.E. (2009). Spatiotemporal patterns and transcription kinetics of induced RNA in single bacterial cells16399-16404 .10.1073/pnas.0907495106
[78] Wang, C.H., Huang, Y.F., and Yeh, C.K. (2011). Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27, 6971-6976 .10.1021/la2011259
[79] Wang, T. (2008). Function and dynamics of aptamers: A case study on malachite green aptamer. Ph.D.dissertation, Iowa State University. ProQuest/UMI access number: AAT 3342297 .
[80] Wang, T., Hoy, J.A., Lamm, M.H., and Nilsen-Hamilton, M. (2009). Computational and experimental analyses converge to reveal a coherent yet malleable aptamer structure that controls chemical reactivity. J Am Chem Soc 131, 14747-14755 .10.1021/ja902719q
[81] Wang, Y., Li, Z., Hu, D., Lin, C.T., Li, J., and Lin, Y. (2010). Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132, 9274-9276 .10.1021/ja103169v
[82] Weil, T.T., Forrest, K.M., and Gavis, E.R. (2006). Localization of bicoid mRNA in late oocytes is maintained by continual active transport. Dev Cell 11, 251-262 .10.1016/j.devcel.2006.06.006
[83] Weissleder, R., and Pittet, M.J. (2008). Imaging in the era of molecular oncology. Nature 452, 580-589 .10.1038/nature06917
[84] Xiao, Z., Shangguan, D., Cao, Z., Fang, X., and Tan, W. (2008). Cell-specific internalization study of an aptamer from whole cell selection. Chemistry 14, 1769-1775 .10.1002/chem.200701330
[85] Yamagishi, M., Ishihama, Y., Shirasaki, Y., Kurama, H., and Funatsu, T. (2009). Single-molecule imaging of beta-actin mRNAs in the cytoplasm of a living cell. Exp Cell Res 315, 1142-1147 .10.1016/j.yexcr.2009.02.009
[86] Yang, L., Zhang, X., Ye, M., Jiang, J., Yang, R., Fu, T., Chen, Y., Wang, K., Liu, C., and Tan, W. (2011). Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev 63, 1361-1370 .10.1016/j.addr.2011.10.002
[87] Yiu, H.-W., Demidov, V.V., Toran, P., Cantor, C.R., and Broude, N.E. (2011). RNA Detection in live bacterial cells using fluorescent protein complementation triggered by interaction of two RNA aptamers with two RNA-binding peptides. Pharmaceuticals 4, 494-508 .10.3390/ph4030494
[88] Yu, M.K., Kim, D., Lee, I.H., So, J.S., Jeong, Y.Y., and Jon, S. (2011). Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7, 2241-2249 .10.1002/smll.201100472
[89] Zeng, Q., and Hall, K.B. (1997). Contribution of the C-terminal tail of U1A RBD1 to RNA recognition and protein stability. RNA 3, 303-314 .
[90] Zhao, W., Schafer, S., Choi, J., Yamanaka, Y.J., Lombardi, M.L., Bose, S., Carlson, A.L., Phillips, J.A., Teo, W., Droujinine, I.A.,. (2011). Cell-surface sensors for real-time probing of cellular environments. Nat Nanotechnol 6, 524-531 .10.1038/nnano.2011.101
[91] Zheng, D., Seferos, D.S., Giljohann, D.A., Patel, P.C., and Mirkin, C.A. (2009). Aptamer nano-flares for molecular detection in living cells. Nano Lett 9, 3258-3261 .10.1021/nl901517b
[92] Zhou, J., Battig, M.R., and Wang, Y. (2010). Aptamer-based molecular recognition for biosensor development. Anal Bioanal Chem 398, 2471-2480 .10.1007/s00216-010-3987-y
[93] Zimyanin, V.L., Belaya, K., Pecreaux, J., Gilchrist, M.J., Clark, A., Davis, I., and St Johnston, D. (2008). In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134, 843-853 .10.1016/j.cell.2008.06.053
AI Summary AI Mindmap
PDF(428 KB)

Accesses

Citations

Detail

Sections
Recommended

/