Crystal structures of D-psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars

Hsiu-Chien Chan1, Yueming Zhu1, Yumei Hu1, Tzu-Ping Ko2, Chun-Hsiang Huang1, Feifei Ren1, Chun-Chi Chen3, Yanhe Ma1, Rey-Ting Guo1(), Yuanxia Sun1()

PDF(628 KB)
PDF(628 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (2) : 123-131. DOI: 10.1007/s13238-012-2026-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Crystal structures of D-psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars

  • Hsiu-Chien Chan1, Yueming Zhu1, Yumei Hu1, Tzu-Ping Ko2, Chun-Hsiang Huang1, Feifei Ren1, Chun-Chi Chen3, Yanhe Ma1, Rey-Ting Guo1(), Yuanxia Sun1()
Author information +
History +

Abstract

D-Psicose 3-epimerase (DPEase) is demonstrated to be useful in the bioproduction of D-psicose, a rare hexose sugar, from D-fructose, found plenty in nature. Clostridium cellulolyticum H10 has recently been identified as a DPEase that can epimerize D-fructose to yield D-psicose with a much higher conversion rate when compared with the conventionally used DTEase. In this study, the crystal structure of the C. cellulolyticum DPEase was determined. The enzyme assembles into a tetramer and each subunit shows a (β/α)8 TIM barrel fold with a Mn2+ metal ion in the active site. Additional crystal structures of the enzyme in complex with substrates/ products (D-psicose, D-fructose, D-tagatose and D-sorbose) were also determined. From the complex structures of C. cellulolyticum DPEase with D-psicose and D-fructose, the enzyme has much more interactions with D-psicose than D-fructose by forming more hydrogen bonds between the substrate and the active site residues. Accordingly, based on these ketohexosebound complex structures, a C3-O3 proton-exchange mechanism for the conversion between D-psicose and D-fructose is proposed here. These results provide a clear idea for the deprotonation/protonation roles of E150 and E244 in catalysis.

Keywords

D-psicose 3-epimerase / ketohexose / complex structure

Cite this article

Download citation ▾
Hsiu-Chien Chan, Yueming Zhu, Yumei Hu, Tzu-Ping Ko, Chun-Hsiang Huang, Feifei Ren, Chun-Chi Chen, Yanhe Ma, Rey-Ting Guo, Yuanxia Sun. Crystal structures of D-psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars. Prot Cell, 2012, 3(2): 123‒131 https://doi.org/10.1007/s13238-012-2026-5

References

[1] Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N.S., . (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905-921 .10.1107/S0907444998003254
[2] Granstr?m, T.B., Takata, G., Tokuda, M., and Izumori, K. (2004). Izumoring: a novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng 97, 89-94 .10.1263/jbb.97.89
[3] Itoh, H., Khan, A.R., Tajima, S., Hayakawa, S., and Izumori, K. (1994). Purification and characterization of D-tagatose 3-epimerase from Pseudomonas sp. ST-24. Biosci Biotechnol Biochem 57, 1037-1039 .
[4] Izumori, K. (1995). Preparation of D-psicose from D-fructose by immobilized D-tagagtose-3-epimerase. J Ferment Bioeng 80, 101-103 .10.1016/0922-338X(95)98186-O
[5] Izumori, K. (2002). Bioproduction strategies for rare hexose sugars. Naturwissenschaften 89, 120-124 .10.1007/s00114-002-0297-z
[6] Kim, H.-J., Hyun, E.-K., Kim, Y.-S., Lee, Y.-J., and Oh, D.-K. (2006a). Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose. Appl Environ Microbiol 72, 981-985 .10.1128/AEM.72.2.981-985.2006
[7] Kim, H.-J., Lim, B.-C., Yeom, S.-J., Kim, Y.-S., Kim, D., and Oh, D.-K. (2010a). Roles of Ile66 and Ala107 of D-psicose 3-epimerase from Agrobacterium tumefaciens in binding O6 of its substrate, D-fructose. Biotechnol Lett 32, 113-118 .10.1007/s10529-009-0115-1
[8] Kim, H.-J., Yeom, S.-J., Kim, K., Rhee, S., Kim, D., and Oh, D.-K. (2010b). Mutational analysis of the active site residues of a D: -psicose 3-epimerase from Agrobacterium tumefaciens. Biotechnol Lett 32, 261-268 .10.1007/s10529-009-0148-5
[9] Kim, K., Kim, H.-J., Oh, D.-K., Cha, S.-S., and Rhee, S. (2006b). Crystal structure of D-psicose 3-epimerase from Agrobacterium tumefaciens and its complex with true substrate D-fructose: a pivotal role of metal in catalysis, an active site for the non-phosphorylated substrate, and its conformational changes. J Mol Biol 361, 920-931 .10.1016/j.jmb.2006.06.069
[10] Kim, N.-H., Kim, H.-J., Kang, D.-I., Jeong, K.-W., Lee, J.-K., Kim, Y., and Oh, D.-K. (2008). Conversion shift of D-fructose to D-psicose for enzyme-catalyzed epimerization by addition of borate. Appl Environ Microbiol 74, 3008-3013 .10.1128/AEM.00249-08
[11] Matsuo, T., Baba, Y., Hashiguchi, M., Takeshita, K., Izumori, K., and Suzuki, H. (2001). Dietary D-psicose, a C-3 epimer of D-fructose, suppresses the activity of hepatic lipogenic enzymes in rats. Asia Pac J Clin Nutr 10, 233-237 .10.1046/j.1440-6047.2001.00246.x
[12] Matsuo, T., and Izumori, K. (2006). Effects of dietary D-psicose on diurnal variation in plasma glucose and insulin concentrations of rats. Biosci Biotechnol Biochem 70, 2081-2085 .10.1271/bbb.60036
[13] Matsuo, T., Suzuki, H., Hashiguchi, M., and Izumori, K. (2002). D-psicose is a rare sugar that provides no energy to growing rats. J Nutr Sci Vitaminol (Tokyo) 48, 77-80 .10.3177/jnsv.48.77
[14] McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674 .10.1107/S0021889807021206
[15] McRee,D.E. (2004). Differential evolution for protein crystallographic optimizations. Acta Crystallogr D Biol Crystallogr 60, 2276-2279 .10.1107/S0907444904025491
[16] Mu, W., Chu, F., Xing, Q., Yu, S., Zhou, L., and Jiang, B. (2011). Cloning, expression, and characterization of a D-psicose 3-epimerase from Clostridium cellulolyticum H10. J Agric Food Chem 59, 7785-7792 .10.1021/jf201356q
[17] Oh, D.-K. (2007). Tagatose: properties, applications, and biotechnological processes. Appl Microbiol Biotechnol 76, 1-8 .10.1007/s00253-007-0981-1
[18] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. In: Methods in enzymology, macromolecular crystallography, part A. CarterC.W., Jr. and SweetR. M. eds. New York: Academic Press, 307-326 .
[19] Emsley, P., and Cowtan, C. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 .
[20] Potterton, E., Briggs, P., Turkenburg, M., and Dodson, E. (2003). A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr 59, 1131-1137 .10.1107/S0907444903008126
[21] Samuel, J., and Tanner, M.E. (2002). Mechanistic aspects of enzymatic carbohydrate epimerization. Nat Prod Rep 19, 261-277 .10.1039/b100492l
[22] Yoshida, H., Yamada, M., Nishitani, T., Takada, G., Izumori, K., and Kamitori, S. (2007). Crystal structures of D-tagatose 3-epimerase from Pseudomonas cichorii and its complexes with D-tagatose and D-fructose. J Mol Biol 374, 443-453 .10.1016/j.jmb.2007.09.033
[23] Zhang, L., Mu, W., Jiang, B., and Zhang, T. (2009). Characterization of D-tagatose-3-epimerase from Rhodobacter sphaeroides that converts D-fructose into D-psicose. Biotechnol Lett 31, 857–862 .10.1007/s10529-009-9942-3
AI Summary AI Mindmap
PDF(628 KB)

Accesses

Citations

Detail

Sections
Recommended

/