[1] Ahn, J.H., and Hayward, G.S. (2000). Disruption of PML-associated nuclear bodies by IE1 correlates with efficient early stages of viral gene expression and DNA replication in human cytomegalovirus infection.
Virology 274, 39-55 .
10.1006/viro.2000.0448[2] Antón, L.C., Schubert, U., Bacík, I., Princiotta, M.F., Wearsch, P.A., Gibbs, J., Day, P.M., Realini, C., Rechsteiner, M.C., Bennink, J.R.,
. (1999). Intracellular localization of proteasomal degradation of a viral antigen.
J Cell Biol 146, 113-124 .
[3] Aslani, A., Simonsson, S., and Elias, P. (2000). A novel conformation of the herpes simplex virus origin of DNA replication recognized by the origin binding protein.
J Biol Chem 275, 5880-5887 .
10.1074/jbc.275.8.5880[4] Bell, P., Lieberman, P.M., and Maul, G.G. (2000). Lytic but not latent replication of epstein-barr virus is associated with PML and induces sequential release of nuclear domain 10 proteins.
J Virol 74, 11800-11810 .
10.1128/JVI.74.24.11800-11810.2000[5] Bernardi, R., and Pandolfi, P.P. (2003). Role of PML and the PML-nuclear body in the control of programmed cell death.
Oncogene 22, 9048-9057 .
10.1038/sj.onc.1207106[6] Bischof, O., Kirsh, O., Pearson, M., Itahana, K., Pelicci, P.G., and Dejean, A. (2002). Deconstructing PML-induced premature senescence.
EMBO J 21, 3358-3369 .
10.1093/emboj/cdf341[7] Blondel, D., Kheddache, S., Lahaye, X., Dianoux, L., and Chelbi-Alix, M.K. (2010). Resistance to rabies virus infection conferred by the PMLIV isoform.
J Virol 84, 10719-10726 .
10.1128/JVI.01286-10[8] Blondel, D., Regad, T., Poisson, N., Pavie, B., Harper, F., Pandolfi, P.P., De Thé, H., and Chelbi-Alix, M.K. (2002). Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies.
Oncogene 21, 7957-7970 .
10.1038/sj.onc.1205931[9] Bonilla, W.V., Pinschewer, D.D., Klenerman, P., Rousson, V., Gaboli, M., Pandolfi, P.P., Zinkernagel, R.M., Salvato, M.S., and Hengartner, H. (2002). Effects of promyelocytic leukemia protein on virus-host balance.
J Virol 76, 3810-3818 .
10.1128/JVI.76.8.3810-3818.2002[10] Boutell, C., and Everett, R.D. (2003). The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and Ubiquitinates p53.
J Biol Chem 278, 36596-36602 .
10.1074/jbc.M300776200[11] Boutell, C., Sadis, S., and Everett, R.D. (2002). Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro.
J Virol 76, 841-850 .
10.1128/JVI.76.2.841-850.2002[12] Cai, W., Astor, T.L., Liptak, L.M., Cho, C., Coen, D.M., and Schaffer, P.A. (1993). The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency.
J Virol 67, 7501-7512 .
[13] Cai, W., and Schaffer, P.A. (1991). A cellular function can enhance gene expression and plating efficiency of a mutant defective in the gene for ICP0, a transactivating protein of herpes simplex virus type 1.
J Virol 65, 4078-4090 .
[14] Cai, W., and Schaffer, P.A. (1992). Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells.
J Virol 66, 2904-2915 .
[15] Chelbi-Alix, M.K., and de Thé, H. (1999). Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins.
Oncogene 18, 935-941 .
10.1038/sj.onc.1202366[16] Chelbi-Alix, M.K., Quignon, F., Pelicano, L., Koken, M.H., and de Thé, H. (1998). Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein.
J Virol 72, 1043-1051 .
[17] Cuchet-Louren?o, D., Boutell, C., Lukashchuk, V., Grant, K., Sykes, A., Murray, J., Orr, A., and Everett, R.D. (2011). SUMO pathway dependent recruitment of cellular repressors to herpes simplex virus type 1 genomes.
PLoS Pathog 7, e1002123.
10.1371/journal.ppat.1002123[18] Dellaire, G., and Bazett-Jones, D.P. (2004). PML nuclear bodies: dynamic sensors of DNA damage and cellular stress.
Bioessays 26, 963-977 .
10.1002/bies.20089[19] Dellaire, G., Ching, R.W., Ahmed, K., Jalali, F., Tse, K.C., Bristow, R.G., and Bazett-Jones, D.P. (2006). Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR.
J Cell Biol 175, 55-66 .
10.1083/jcb.200604009[20] DeLuca, N.A., McCarthy, A.M., and Schaffer, P.A. (1985). Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4.
J Virol 56, 558-570 .
[21] Doucas, V., Ishov, A.M., Romo, A., Juguilon, H., Weitzman, M.D., Evans, R.M., and Maul, G.G. (1996). Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure.
Genes Dev 10, 196-207 .
10.1101/gad.10.2.196[22] Duprez, E., Saurin, A.J., Desterro, J.M., Lallemand-Breitenbach, V., Howe, K., Boddy, M.N., Solomon, E., de Thé, H., Hay, R.T., and Freemont, P.S. (1999). SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation.
J Cell Sci 112, 381-393 .
[23] Efstathiou, S., and Preston, C.M. (2005). Towards an understanding of the molecular basis of herpes simplex virus latency.
Virus Res 111, 108-119 .
10.1016/j.virusres.2005.04.017[24] El McHichi, B., Regad, T., Maroui, M.A., Rodriguez, M.S., Aminev, A., Gerbaud, S., Escriou, N., Dianoux, L., and Chelbi-Alix, M.K. (2010). SUMOylation promotes PML degradation during encephalomyocarditis virus infection.
J Virol 84, 11634-11645 .
10.1128/JVI.01321-10[25] Everett, R.D. (1988). Analysis of the functional domains of herpes simplex virus type 1 immediate-early polypeptide Vmw110.
J Mol Biol 202, 87-96 .
10.1016/0022-2836(88)90521-9[26] Everett, R.D. (1989). Construction and characterization of herpes simplex virus type 1 mutants with defined lesions in immediate early gene 1.
J Gen Virol 70, 1185-1202 .
10.1099/0022-1317-70-5-1185[27] Everett, R.D. (2000). ICP0, a regulator of herpes simplex virus during lytic and latent infection.
Bioessays 22, 761-770 .
10.1002/1521-1878(200008)22:8<761::AID-BIES10>3.0.CO;2-A[28] Everett, R.D. (2001). DNA viruses and viral proteins that interact with PML nuclear bodies.
Oncogene 20, 7266-7273 .
10.1038/sj.onc.1204759[29] Everett, R.D. (2006). Interactions between DNA viruses, ND10 and the DNA damage response.
Cell Microbiol 8, 365-374 .
10.1111/j.1462-5822.2005.00677.x[30] Everett, R.D., Boutell, C., and Orr, A. (2004a). Phenotype of a herpes simplex virus type 1 mutant that fails to express immediate-early regulatory protein ICP0.
J Virol 78, 1763-1774 .
10.1128/JVI.78.4.1763-1774.2004[31] Everett, R.D., and Chelbi-Alix, M.K. (2007). PML and PML nuclear bodies: implications in antiviral defence.
Biochimie 89, 819-830 .
10.1016/j.biochi.2007.01.004[32] Everett, R.D., Earnshaw, W.C., Findlay, J., and Lomonte, P. (1999a). Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110.
EMBO J 18, 1526-1538 .
10.1093/emboj/18.6.1526[33] Everett, R.D., Freemont, P., Saitoh, H., Dasso, M., Orr, A., Kathoria, M., and Parkinson, J. (1998a). The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms.
J Virol 72, 6581-6591 .
[34] Everett, R.D., Lomonte, P., Sternsdorf, T., van Driel, R., and Orr, A. (1999b). Cell cycle regulation of PML modification and ND10 composition.
J Cell Sci 112, 4581-4588 .
[35] Everett, R.D., and Maul, G.G. (1994). HSV-1 IE protein Vmw110 causes redistribution of PML.
EMBO J 13, 5062-5069 .
[36] Everett, R.D., Meredith, M., Orr, A., Cross, A., Kathoria, M., and Parkinson, J. (1997). A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein.
EMBO J 16, 566-577 .
10.1093/emboj/16.3.566[37] Everett, R.D., and Murray, J. (2005). ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection.
J Virol 79, 5078-5089 .
10.1128/JVI.79.8.5078-5089.2005[38] Everett, R.D., Murray, J., Orr, A., and Preston, C.M. (2007). Herpes simplex virus type 1 genomes are associated with ND10 nuclear substructures in quiescently infected human fibroblasts.
J Virol 81, 10991-11004 .
10.1128/JVI.00705-07[39] Everett, R.D., Orr, A., and Preston, C.M. (1998b). A viral activator of gene expression functions via the ubiquitin-proteasome pathway.
EMBO J 17, 7161-7169 .
10.1093/emboj/17.24.7161[40] Everett, R.D., Parada, C., Gripon, P., Sirma, H., and Orr, A. (2008a). Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100.
J Virol 82, 2661-2672 .
10.1128/JVI.02308-07[41] Everett, R.D., Rechter, S., Papior, P., Tavalai, N., Stamminger, T., and Orr, A. (2006). PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0.
J Virol 80, 7995-8005 .
10.1128/JVI.00734-06[42] Everett, R.D., Sourvinos, G., Leiper, C., Clements, J.B., and Orr, A. (2004b). Formation of nuclear foci of the herpes simplex virus type 1 regulatory protein ICP4 at early times of infection: localization, dynamics, recruitment of ICP27, and evidence for the de novo induction of ND10-like complexes.
J Virol 78, 1903-1917 .
10.1128/JVI.78.4.1903-1917.2004[43] Everett, R.D., Young, D.F., Randall, R.E., and Orr, A. (2008b). STAT-1- and IRF-3-dependent pathways are not essential for repression of ICP0-null mutant herpes simplex virus type 1 in human fibroblasts.
J Virol 82, 8871-8881 .
10.1128/JVI.00613-08[44] Ferenczy, M.W., and DeLuca, N.A. (2011). Reversal of heterochromatic silencing of quiescent herpes simplex virus type 1 by ICP0.
J Virol 85, 3424-3435 .
10.1128/JVI.02263-10[45] Fraefel, C., Bittermann, A.G., Büeler, H., Heid, I., B?chi, T., and Ackermann, M. (2004). Spatial and temporal organization of adeno-associated virus DNA replication in live cells.
J Virol 78, 389-398 .
10.1128/JVI.78.1.389-398.2004[46] Fukuyo, Y., Horikoshi, N., Ishov, A.M., Silverstein, S.J., and Nakajima, T. (2011). The herpes simplex virus immediate-early ubiquitin ligase ICP0 induces degradation of the ICP0 repressor protein E2FBP1.
J Virol 85, 3356-3366 .
10.1128/JVI.02105-10[47] Fukuyo, Y., Mogi, K., Tsunematsu, Y., and Nakajima, T. (2004). E2FBP1/hDril1 modulates cell growth through downregulation of promyelocytic leukemia bodies.
Cell Death Differ 11, 747-759 .
10.1038/sj.cdd.4401412[48] Gresko, E., Ritterhoff, S., Sevilla-Perez, J., Roscic, A., Fr?bius, K., Kotevic, I., Vichalkovski, A., Hess, D., Hemmings, B.A., and Schmitz, M.L. (2009). PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage.
Oncogene 28, 698-708 .
10.1038/onc.2008.420[49] Gu, H., and Roizman, B. (2003). The degradation of promyelocytic leukemia and Sp100 proteins by herpes simplex virus 1 is mediated by the ubiquitin-conjugating enzyme UbcH5a.
Proc Natl Acad Sci U S A 100, 8963-8968 .
10.1073/pnas.1533420100[50] Hagglund, R., and Roizman, B. (2002). Characterization of the novel E3 ubiquitin ligase encoded in exon 3 of herpes simplex virus-1-infected cell protein 0.
Proc Natl Acad Sci U S A 99, 7889-7894 .
10.1073/pnas.122246999[51] Hagglund, R., and Roizman, B. (2003). Herpes simplex virus 1 mutant in which the ICP0 HUL-1 E3 ubiquitin ligase site is disrupted stabilizes cdc34 but degrades D-type cyclins and exhibits diminished neurotoxicity.
J Virol 77, 13194-13202 .
10.1128/JVI.77.24.13194-13202.2003[52] Hagglund, R., and Roizman, B. (2004). Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1.
J Virol 78, 2169-2178 .
10.1128/JVI.78.5.2169-2178.2004[53] Hagglund, R., Van Sant, C., Lopez, P., and Roizman, B. (2002). Herpes simplex virus 1-infected cell protein 0 contains two E3 ubiquitin ligase sites specific for different E2 ubiquitin-conjugating enzymes.
Proc Natl Acad Sci U S A 99, 631-636 .
10.1073/pnas.022531599[54] Halford, W.P., Kemp, C.D., Isler, J.A., Davido, D.J., and Schaffer, P.A. (2001). ICP0, ICP4, or VP16 expressed from adenovirus vectors induces reactivation of latent herpes simplex virus type 1 in primary cultures of latently infected trigeminal ganglion cells.
J Virol 75, 6143-6153 .
10.1128/JVI.75.13.6143-6153.2001[55] Halford, W.P., and Schaffer, P.A. (2001). ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency.
J Virol 75, 3240-3249 .
10.1128/JVI.75.7.3240-3249.2001[56] Harris, R.A., and Preston, C.M. (1991). Establishment of latency in vitro by the herpes simplex virus type 1 mutant in1814.
J Gen Virol 72, 907-913 .
10.1099/0022-1317-72-4-907[57] Herrera, F.J., and Triezenberg, S.J. (2004). VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection.
J Virol 78, 9689-9696 .
10.1128/JVI.78.18.9689-9696.2004[58] Iki, S., Yokota, S., Okabayashi, T., Yokosawa, N., Nagata, K., and Fujii, N. (2005). Serum-dependent expression of promyelocytic leukemia protein suppresses propagation of influenza virus.
Virology 343, 106-115 .
10.1016/j.virol.2005.08.010[59] Ishov, A.M., and Maul, G.G. (1996). The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition.
J Cell Biol 134, 815-826 .
10.1083/jcb.134.4.815[60] Ishov, A.M., Sotnikov, A.G., Negorev, D., Vladimirova, O.V., Neff, N., Kamitani, T., Yeh, E.T., Strauss, J.F. 3rd, and Maul, G.G. (1999). PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1.
J Cell Biol 147, 221-234 .
10.1083/jcb.147.2.221[61] Ishov, A.M., Stenberg, R.M., and Maul, G.G. (1997). Human cytomegalovirus immediate early interaction with host nuclear structures: definition of an immediate transcript environment.
J Cell Biol 138, 5-16 .
10.1083/jcb.138.1.5[62] Jackson, S.A., and DeLuca, N.A. (2003). Relationship of herpes simplex virus genome configuration to productive and persistent infections.
Proc Natl Acad Sci U S A 100, 7871-7876 .
10.1073/pnas.1230643100[63] Jul-Larsen, A., Visted, T., Karlsen, B.O., Rinaldo, C.H., Bjerkvig, R., L?nning, P.E., and B?e, S.O. (2004). PML-nuclear bodies accumulate DNA in response to polyomavirus BK and simian virus 40 replication.
Exp Cell Res 298, 58-73 .
10.1016/j.yexcr.2004.03.045[64] Kamitani, T., Kito, K., Nguyen, H.P., Wada, H., Fukuda-Kamitani, T., and Yeh, E.T. (1998a). Identification of three major sentrinization sites in PML.
J Biol Chem 273, 26675-26682 .
10.1074/jbc.273.41.26675[65] Kamitani, T., Nguyen, H.P., Kito, K., Fukuda-Kamitani, T., and Yeh, E.T. (1998b). Covalent modification of PML by the sentrin family of ubiquitin-like proteins.
J Biol Chem 273, 3117-3120 .
10.1074/jbc.273.6.3117[66] Kawaguchi, Y., Bruni, R., and Roizman, B. (1997a). Interaction of herpes simplex virus 1 alpha regulatory protein ICP0 with elongation factor 1delta: ICP0 affects translational machinery.
J Virol 71, 1019-1024 .
[67] Kawaguchi, Y., Tanaka, M., Yokoymama, A., Matsuda, G., Kato, K., Kagawa, H., Hirai, K., and Roizman, B. (2001). Herpes simplex virus 1 alpha regulatory protein ICP0 functionally interacts with cellular transcription factor BMAL1.
Proc Natl Acad Sci U S A 98, 1877-1882 .
10.1073/pnas.041592598[68] Kawaguchi, Y., Van Sant, C., and Roizman, B. (1997b). Herpes simplex virus 1 alpha regulatory protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin D3.
J Virol 71, 7328-7336 .
[69] Klemm, R.D., Goodrich, J.A., Zhou, S., and Tjian, R. (1995). Molecular cloning and expression of the 32-kDa subunit of human TFIID reveals interactions with VP16 and TFIIB that mediate transcriptional activation.
Proc Natl Acad Sci U S A 92, 5788-5792 .
10.1073/pnas.92.13.5788[70] Kyratsous, C.A., and Silverstein, S.J. (2009). Components of nuclear domain 10 bodies regulate varicella-zoster virus replication.
J Virol 83, 4262-4274 .
10.1128/JVI.00021-09[71] Lallemand-Breitenbach, V., Zhu, J., Puvion, F., Koken, M., Honoré, N., Doubeikovsky, A., Duprez, E., Pandolfi, P.P., Puvion, E., Freemont, P.,
. (2001). Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation.
J Exp Med 193, 1361-1371 .
10.1084/jem.193.12.1361[72] Lees-Miller, S.P., Long, M.C., Kilvert, M.A., Lam, V., Rice, S.A., and Spencer, C.A. (1996). Attenuation of DNA-dependent protein kinase activity and its catalytic subunit by the herpes simplex virus type 1 transactivator ICP0.
J Virol 70, 7471-7477 .
[73] Lehman, I.R., and Boehmer, P.E. (1999). Replication of herpes simplex virus DNA.
J Biol Chem 274, 28059-28062 .
10.1074/jbc.274.40.28059[74] Leib, D.A., Coen, D.M., Bogard, C.L., Hicks, K.A., Yager, D.R., Knipe, D.M., Tyler, K.L., and Schaffer, P.A. (1989). Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency.
J Virol 63, 759-768 .
[75] Li, W., Wang, G., Zhang, H., Zhang, D., Zeng, J., Chen, X., Xu, Y., and Li, K. (2009). Differential suppressive effect of promyelocytic leukemia protein on the replication of different subtypes/strains of influenza A virus.
Biochem Biophys Res Commun 389, 84-89 .
10.1016/j.bbrc.2009.08.091[76] Ling, P.D., Peng, R.S., Nakajima, A., Yu, J.H., Tan, J., Moses, S.M., Yang, W.H., Zhao, B., Kieff, E., Bloch, K.D.,
. (2005). Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100.
EMBO J 24, 3565-3575 .
10.1038/sj.emboj.7600820[77] Lomonte, P., and Morency, E. (2007). Centromeric protein CENP-B proteasomal degradation induced by the viral protein ICP0.
FEBS Lett 581, 658-662 .
10.1016/j.febslet.2007.01.027[78] Lomonte, P., Sullivan, K.F., and Everett, R.D. (2001). Degradation of nucleosome-associated centromeric histone H3-like protein CENP-A induced by herpes simplex virus type 1 protein ICP0.
J Biol Chem 276, 5829-5835 .
10.1074/jbc.M008547200[79] Lomonte, P., Thomas, J., Texier, P., Caron, C., Khochbin, S., and Epstein, A.L. (2004). Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1.
J Virol 78, 6744-6757 .
10.1128/JVI.78.13.6744-6757.2004[80] Lopez, P., Jacob, R.J., and Roizman, B. (2002). Overexpression of promyelocytic leukemia protein precludes the dispersal of ND10 structures and has no effect on accumulation of infectious herpes simplex virus 1 or its proteins.
J Virol 76, 9355-9367 .
10.1128/JVI.76.18.9355-9367.2002[81] Lukashchuk, V., and Everett, R.D. (2010). Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx.
J Virol 84, 4026-4040 .
10.1128/JVI.02597-09[82] Mahajan, S.S., Little, M.M., Vazquez, R., and Wilson, A.C. (2002). Interaction of HCF-1 with a cellular nuclear export factor.
J Biol Chem 277, 44292-44299 .
10.1074/jbc.M205440200[83] Maul, G.G. (1998). Nuclear domain 10, the site of DNA virus transcription and replication.
Bioessays 20, 660-667 .
10.1002/(SICI)1521-1878(199808)20:8<660::AID-BIES9>3.0.CO;2-M[84] Maul, G.G., and Everett, R.D. (1994). The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0.
J Gen Virol 75, 1223-1233 .
10.1099/0022-1317-75-6-1223[85] Maul, G.G., Guldner, H.H., and Spivack, J.G. (1993). Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICP0).
J Gen Virol 74, 2679-2690 .
10.1099/0022-1317-74-12-2679[86] Maul, G.G., Ishov, A.M., and Everett, R.D. (1996). Nuclear domain 10 as preexisting potential replication start sites of herpes simplex virus type-1.
Virology 217, 67-75 .
10.1006/viro.1996.0094[87] McNally, B.A., Trgovcich, J., Maul, G.G., Liu, Y., and Zheng, P. (2008). A role for cytoplasmic PML in cellular resistance to viral infection.
PLoS One 3, e2277.
10.1371/journal.pone.0002277[88] Memedula, S., and Belmont, A.S. (2003). Sequential recruitment of HAT and SWI/SNF components to condensed chromatin by VP16.
Curr Biol 13, 241-246 .
10.1016/S0960-9822(03)00048-4[89] Meredith, M., Orr, A., Elliott, M., and Everett, R. (1995). Separation of sequence requirements for HSV-1 Vmw110 multimerisation and interaction with a 135-kDa cellular protein.
Virology 209, 174-187 .
10.1006/viro.1995.1241[90] Mitchell, B.M., Bloom, D.C., Cohrs, R.J., Gilden, D.H., and Kennedy, P.G. (2003). Herpes simplex virus-1 and varicella-zoster virus latency in ganglia.
J Neurovirol 9, 194-204 .
[91] Mittler, G., Stühler, T., Santolin, L., Uhlmann, T., Kremmer, E., Lottspeich, F., Berti, L., and Meisterernst, M. (2003). A novel docking site on Mediator is critical for activation by VP16 in mammalian cells.
EMBO J 22, 6494-6504 .
10.1093/emboj/cdg619[92] Mossman, K.L., and Smiley, J.R. (2002). Herpes simplex virus ICP0 and ICP34.5 counteract distinct interferon-induced barriers to virus replication.
J Virol 76, 1995-1998 .
10.1128/JVI.76.4.1995-1998.2002[93] Müller, S., Matunis, M.J., and Dejean, A. (1998). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus.
EMBO J 17, 61-70 .
10.1093/emboj/17.1.61[94] Negorev, D., and Maul, G.G. (2001). Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot.
Oncogene 20, 7234-7242.
10.1038/sj.onc.1204764[95] Negorev, D.G., Vladimirova, O.V., Ivanov, A., Rauscher, F. 3rd, and Maul, G.G. (2006). Differential role of Sp100 isoforms in interferon- mediated repression of herpes simplex virus type 1 immediate-early protein expression.
expression 80, 8019-8029 .
10.1128/JVI.02164-05[96] Negorev, D.G., Vladimirova, O.V., and Maul, G.G. (2009). Differential functions of interferon-upregulated Sp100 isoforms: herpes simplex virus type 1 promoter-based immediate-early gene suppression and PML protection from ICP0-mediated degradation.
J Virol 83, 5168-5180
10.1128/JVI.02083-08[97] Pampin, M., Simonin, Y., Blondel, B., Percherancier, Y., and Chelbi-Alix, M.K. (2006). Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense.
J Virol 80, 8582-8592 .
10.1128/JVI.00031-06[98] Parkinson, J., and Everett, R.D. (2000). Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins.
J Virol 74, 10006-10017 .
10.1128/JVI.74.21.10006-10017.2000[99] Parkinson, J., Lees-Miller, S.P., and Everett, R.D. (1999). Herpes simplex virus type 1 immediate-early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA-dependent protein kinase.
J Virol 73, 650-657 .
[100] Paterson, T., and Everett, R.D. (1988). Mutational dissection of the HSV-1 immediate-early protein Vmw175 involved in transcriptional transactivation and repression.
Virology 166, 186-196 .
10.1016/0042-6822(88)90160-2[101] Preston, C.M. (2000). Repression of viral transcription during herpes simplex virus latency.
J Gen Virol 81, 1-19 .
[102] Preston, C.M., and Nicholl, M.J. (1997). Repression of gene expression upon infection of cells with herpes simplex virus type 1 mutants impaired for immediate-early protein synthesis.
J Virol 71, 7807-7813 .
[103] Regad, T., and Chelbi-Alix, M.K. (2001). Role and fate of PML nuclear bodies in response to interferon and viral infections.
Oncogene 20, 7274-7286 .
10.1038/sj.onc.1204854[104] Regad, T., Saib, A., Lallemand-Breitenbach, V., Pandolfi, P.P., de Thé, H., and Chelbi-Alix, M.K. (2001). PML mediates the interferon- induced antiviral state against a complex retrovirus via its association with the viral transactivator.
EMBO J 20, 3495-3505 .
10.1093/emboj/20.13.3495[105] Reichelt, M., Wang, L., Sommer, M., Perrino, J., Nour, A.M., Sen, N., Baiker, A., Zerboni, L., and Arvin, A.M. (2011). Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus.
PLoS Pathog 7, e1001266.
10.1371/journal.ppat.1001266[106] Rolley, N., Butcher, S., and Milner, J. (1995). Specific DNA binding by different classes of human p53 mutants.
Oncogene 11, 763-770 .
[107] Sacks, W.R., and Schaffer, P.A. (1987). Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture.
J Virol 61, 829-839 .
[108] Saffert, R.T., and Kalejta, R.F. (2008). Promyelocytic leukemia-nuclear body proteins: herpesvirus enemies, accomplices, or both?
Future Virol 3, 265-277 .
10.2217/17460794.3.3.265[109] Samaniego, L.A., Neiderhiser, L., and DeLuca, N.A. (1998). Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins.
J Virol 72, 3307-3320 .
[110] Schreiner, S., Wimmer, P., Sirma, H., Everett, R.D., Blanchette, P., Groitl, P., and Dobner, T. (2010). Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus- infected cells.
J Virol 84, 7029-7038 .
10.1128/JVI.00074-10[111] Seeler, J.S., and Dejean, A. (2001). SUMO: of branched proteins and nuclear bodies.
Oncogene 20, 7243-7249 .
10.1038/sj.onc.1204758[112] Shen, T.H., Lin, H.K., Scaglioni, P.P., Yung, T.M., and Pandolfi, P.P. (2006). The mechanisms of PML-nuclear body formation.
Mol Cell 24, 331-339 .
10.1016/j.molcel.2006.09.013[113] Shimomura Y. (2008). Herpes simplex virus latency, reactivation, and a new antiviral therapy for herpetic keratitis.
Nihon Ganka Gakkai Zasshi 112, 247-264 ; discussion 265.
[114] Smith, A.E., and Helenius, A. (2004). How viruses enter animal cells.
Science 304, 237-242 .
10.1126/science.1094823[115] Smith, C.A., Bates, P., Rivera-Gonzalez, R., Gu, B., and DeLuca, N.A. (1993). ICP4, the major transcriptional regulatory protein of herpes simplex virus type 1, forms a tripartite complex with TATA-binding protein and TFIIB.
J Virol 67, 4676-4687 .
[116] Sternsdorf, T., Gr?tzinger, T., Jensen, K., and Will, H. (1997a). Nuclear dots: actors on many stages.
Immunobiology 198, 307-331 .
10.1016/S0171-2985(97)80051-4[117] Sternsdorf, T., Jensen, K., Reich, B., and Will, H. (1999). The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers.
J Biol Chem 274, 12555-12566 .
10.1074/jbc.274.18.12555[118] Sternsdorf, T., Jensen, K., and Will, H. (1997b). Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1.
J Cell Biol 139, 1621-1634 .
10.1083/jcb.139.7.1621[119] Stow, N.D., and Stow, E.C. (1986). Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110.
J Gen Virol 67, 2571-2585 .
10.1099/0022-1317-67-12-2571[120] Tavalai, N., Papior, P., Rechter, S., Leis, M., and Stamminger, T. (2006). Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections.
J Virol 80, 8006-8018 .
10.1128/JVI.00743-06[121] Tavalai, N., Papior, P., Rechter, S., and Stamminger, T. (2008). Nuclear domain 10 components promyelocytic leukemia protein and hDaxx independently contribute to an intrinsic antiviral defense against human cytomegalovirus infection.
J Virol 82, 126-137 .
10.1128/JVI.01685-07[122] Tavalai, N., and Stamminger, T. (2008). New insights into the role of the subnuclear structure ND10 for viral infection.
Biochim Biophys Acta 1783, 2207-2221 .
10.1016/j.bbamcr.2008.08.004[123] Van Sant, C., Hagglund, R., Lopez, P., and Roizman, B. (2001). The infected cell protein 0 of herpes simplex virus 1 dynamically interacts with proteasomes, binds and activates the cdc34 E2 ubiquitin-conjugating enzyme, and possesses in vitro E3 ubiquitin ligase activity.
Proc Natl Acad Sci U S A 98, 8815-8820 .
10.1073/pnas.161283098[124] von Einem, J., Schumacher, D., O’Callaghan, D.J., and Osterrieder, N. (2006). The alpha-TIF (VP16) homologue (ETIF) of equine herpesvirus 1 is essential for secondary envelopment and virus egress.
J Virol 80, 2609-2620 .
10.1128/JVI.80.6.2609-2620.2006[125] Wagner, E.K., and Bloom, D.C. (1997). Experimental investigation of herpes simplex virus latency.
Clin Microbiol Rev 10, 419-443 .
[126] Watson, R.J., and Clements, J.B. (1980). A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis.
Nature 285, 329-330 .
10.1038/285329a0[127] Wiesmeijer, K., Molenaar, C., Bekeer, I.M., Tanke, H.J., and Dirks, R.W. (2002). Mobile foci of Sp100 do not contain PML: PML bodies are immobile but PML and Sp100 proteins are not.
J Struct Biol 140, 180-188 .
10.1016/S1047-8477(02)00529-4[128] Wysocka, J., and Herr, W. (2003). The herpes simplex virus VP16-induced complex: the makings of a regulatory switch.
Trends Biochem Sci 28, 294-304 .
10.1016/S0968-0004(03)00088-4[129] Xiao, H., Pearson, A., Coulombe, B., Truant, R., Zhang, S., Regier, J.L., Triezenberg, S.J., Reinberg, D., Flores, O., Ingles, C.J.,
. (1994). Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53.
Mol Cell Biol 14, 7013-7024 .
[130] Yao, F., and Schaffer, P.A. (1995). An activity specified by the osteosarcoma line U2OS can substitute functionally for ICP0, a major regulatory protein of herpes simplex virus type 1.
J Virol 69, 6249-6258 .
[131] Zhong, S., Müller, S., Ronchetti, S., Freemont, P.S., Dejean, A., and Pandolfi, P.P. (2000). Role of SUMO-1-modified PML in nuclear body formation.
Blood 95, 2748-2752 .