Development of a real time PCR assay for rapid detection of Vibrio parahaemolyticus from seafood

Bin Liu, Xiaohua He, Wanyi Chen, Shuijing Yu, Chunlei Shi, Xiujuan Zhou, Jing Chen, Dapeng Wang, Xianming Shi()

PDF(344 KB)
PDF(344 KB)
Protein Cell ›› 2012, Vol. 3 ›› Issue (3) : 204-212. DOI: 10.1007/s13238-012-2017-6
COMMUNICATION
COMMUNICATION

Development of a real time PCR assay for rapid detection of Vibrio parahaemolyticus from seafood

  • Bin Liu, Xiaohua He, Wanyi Chen, Shuijing Yu, Chunlei Shi, Xiujuan Zhou, Jing Chen, Dapeng Wang, Xianming Shi()
Author information +
History +

Abstract

A real time PCR assay for the detection of Vibrio parahaemolyticus in seafood samples was developed using a novel specific target and a competitive internal amplification control (IAC). The specificity of this assay was evaluated using 390 bacterial strains including V.parahaemolyticus, and other strains belonging to Vibrio and non-Vibrio species. The real time PCR assay unambiguously distinguished V. parahaemolyticus with a detection sensitivity of 4.8 fg per PCR with purified genomic DNA or 1 CFU per reaction by counting V. parahaemolyticus colonies. The assays of avoiding interference demonstrated that, even in the presence of 2.1 μg genomic DNA or 107 CFU background bacteria, V. parahaemolyticus could still be accurately detected. In addition, the IAC was used to indicate false-negative results, and lower than 94 copies of IAC per reaction had no influence on the detection limit. Ninety-six seafood samples were tested, of which 58 (60.4%) were positive, including 3 false negative results. Consequently, the real time PCR assay is effective for the rapid detection of V. parahaemotyticus contaminants in seafood.

Keywords

Vibrio parahaemolyticus / real time PCR / internal amplification control / seafood

Cite this article

Download citation ▾
Bin Liu, Xiaohua He, Wanyi Chen, Shuijing Yu, Chunlei Shi, Xiujuan Zhou, Jing Chen, Dapeng Wang, Xianming Shi. Development of a real time PCR assay for rapid detection of Vibrio parahaemolyticus from seafood. Prot Cell, 2012, 3(3): 204‒212 https://doi.org/10.1007/s13238-012-2017-6

References

[1] Abdulmawjood, A., Roth, S., and Bülte, M. (2002). Two methods for construction of internal amplification controls for the detection of Escherichia coli O157 by polymerase chain reaction. Mol Cell Probes 16, 335-339 .10.1006/mcpr.2002.0431
[2] Abu Al-Soud, W., and Radstr?m, P. (1998). Capacity of nine thermostable DNA polymerases To mediate DNA amplification in the presence of PCR-inhibiting samples. Appl Environ Microbiol 64, 3748-3753 .
[3] Al-Soud, W.A., and R?dstr?m, P. (2001). Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39, 485-493 .10.1128/JCM.39.2.485-493.2001
[4] Bej, A.K., Patterson, D.P., Brasher, C.W., Vickery, M.C., Jones, D.D., and Kaysner, C.A. (1999). Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J Microbiol Methods 36, 215-225 .10.1016/S0167-7012(99)00037-8
[5] Blackstone, G.M., Nordstrom, J.L., Bowen, M.D., Meyer, R.F., Imbro, P., and DePaola, A. (2007). Use of a real time PCR assay for detection of the ctxA gene of Vibrio cholerae in an environmental survey of Mobile Bay. J Microbiol Methods 68, 254-259 .10.1016/j.mimet.2006.08.006
[6] Courtney, B.C., Smith, M.M., and Henchal, E.A. (1999). Development of internal controls for probe-based nucleic acid diagnostic assays. Anal Biochem 270, 249-256 .10.1006/abio.1999.4099
[7] Hartman, L.J., Coyne, S.R., and Norwood, D.A. (2005). Development of a novel internal positive control for Taqman based assays. Mol Cell Probes 19, 51-59 .10.1016/j.mcp.2004.07.006
[8] Hoorfar, J., Malorny, B., Abdulmawjood, A., Cook, N., Wagner, M., and Fach, P. (2004). Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol 42, 1863-1868 .10.1128/JCM.42.5.1863-1868.2004
[9] Hossain, M.T., Kim, E.Y., Kim, Y.R., Kim, D.G., and Kong, I.S. (2012). Application of groEL gene for the species-specific detection of Vibrio parahaemolyticus by PCR. Lett Appl Microbiol 54, 67-72 .10.1111/j.1472-765X.2011.03174.x
[10] Kim, Y.B., Okuda, J., Matsumoto, C., Takahashi, N., Hashimoto, S., and Nishibuchi, M. (1999). Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. J Clin Microbiol 37, 1173-1177 .
[11] Kreader, C.A. (1996). Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62, 1102-1106 .
[12] Luan, X.Y., Chen, J.X., Zhang, X.H., Jia, J.T., Sun, F.R., and Li, Y. (2007). Comparison of different primers for rapid detection of Vibrio parahaemolyticus using the polymerase chain reaction. Lett Appl Microbiol 44, 242-247 .10.1111/j.1472-765X.2006.02074.x
[13] Maaroufi, Y., Ahariz, N., Husson, M., and Crokaert, F. (2004). Comparison of different methods of isolation of DNA of commonly encountered Candida species and its quantitation by using a real-time PCR-based assay. J Clin Microbiol 42, 3159-3163 .10.1128/JCM.42.7.3159-3163.2004
[14] Maaroufi, Y., de Bruyne, J.M., Duchateau, V., Scheen, R., and Crokaert, F. (2006). Development of a multiple internal control for clinical diagnostic real-time amplification assays. FEMS Immunol Med Microbiol 48, 183-191 .10.1111/j.1574-695X.2006.00125.x
[15] Makino, K., Oshima, K., Kurokawa, K., Yokoyama, K., Uda, T., Tagomori, K., Iijima, Y., Najima, M., Nakano, M., Yamashita, A., . (2003). Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361, 743-749 .10.1016/S0140-6736(03)12659-1
[16] Miller, V.L., Taylor, R.K., and Mekalanos, J.J. (1987). Cholera toxin transcriptional activator toxR is a transmembrane DNA binding protein. Cell 48, 271-279 .10.1016/0092-8674(87)90430-2
[17] Nichols, R.A., Campbell, B.M., and Smith, H.V. (2003). Identification of Cryptosporidium spp. oocysts in United Kingdom noncarbonated natural mineral waters and drinking waters by using a modified nested PCR-restriction fragment length polymorphism assay. Appl Environ Microbiol 69, 4183-4189 .10.1128/AEM.69.7.4183-4189.2003
[18] Protein & Cell Bin Liu et al. Niesters, H.G. (2004). Molecular and diagnostic clinical virology in real time. Clin Microbiol Infect 10, 5-11 .10.1111/j.1469-0691.2004.00699.x
[19] Nordstrom, J.L., Vickery, M.C., Blackstone, G.M., Murray, S.L., and DePaola, A. (2007). Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Appl Environ Microbiol 73, 5840-5847 .10.1128/AEM.00460-07
[20] Raggam, R.B., Leitner, E., Berg, J., Mühlbauer, G., Marth, E., and Kessler, H.H. (2005). Single-run, parallel detection of DNA from three pneumonia-producing bacteria by real-time polymerase chain reaction. J Mol Diagn 7, 133-138 .10.1016/S1525-1578(10)60019-0
[21] Rodríguez-Lázaro, D., Pla, M., Scortti, M., Monzó, H.J., and Vázquez-Boland, J.A. (2005). A novel real-time PCR for Listeria monocytogenes that monitors analytical performance via an internal amplification control. Appl Environ Microbiol 71, 9008-9012 .10.1128/AEM.71.12.9008-9012.2005
[22] Rosenstraus, M., Wang, Z., Chang, S.Y., DeBonville, D., and Spadoro, J.P. (1998). An internal control for routine diagnostic PCR: design, properties, and effect on clinical performance. J Clin Microbiol 36, 191-197 .
[23] Sachadyn, P., and Kur, J. (1998). The construction and use of a PCR internal control. Mol Cell Probes 12, 259-262 .10.1006/mcpr.1998.0170
[24] Shirai, H., Ito, H., Hirayama, T., Nakamoto, Y., Nakabayashi, N., Kumagai, K., Takeda, Y., and Nishibuchi, M. (1990). Molecular epidemiologic evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis. Infect Immun 58, 3568-3573 .
[25] Tada, J., Ohashi, T., Nishimura, N., Shirasaki, Y., Ozaki, H., Fukushima, S., Takano, J., Nishibuchi, M., and Takeda, Y. (1992). Detection of the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction. Mol Cell Probes 6, 477-487 .10.1016/0890-8508(92)90044-X
[26] Venkateswaran, K., Dohmoto, N., and Harayama, S. (1998). Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp. Appl Environ Microbiol 64, 681-687 .
[27] Wang, S., Duan, H., Zhang, W., and Li, J.W. (2007). Analysis of bacterial foodborne disease outbreaks in China between 1994 and 2005. FEMS Immunol Med Microbiol 51, 8-13 .10.1111/j.1574-695X.2007.00305.x
[28] Ward, L.N., and Bej, A.K. (2006). Detection of Vibrio parahaemolyticus in shellfish by use of multiplexed real-time PCR with TaqMan fluorescent probes. Appl Environ Microbiol 72, 2031-2042 .10.1128/AEM.72.3.2031-2042.2006
[29] Wieczorek, K., and Osek, J. (2004). Development of a PCR internal amplification control for the detection of Shiga toxin-producing Escherichia coli. Bulletin Veterinary Institute Pulawy 48, 397-401 .
[30] Yu, S., Chen, W., Wang, D., He, X., Zhu, X., and Shi, X. (2010). Species-specific PCR detection of the food-borne pathogen Vibrio parahaemolyticus using the irgB gene identified by comparative genomic analysis. FEMS Microbiol Lett 307, 65-71 .10.1111/j.1574-6968.2010.01952.x
[31] Zhu, D.S., Zhou, M., Fan, Y.L., and Shi, X.M. (2009). Identification of new target sequences for PCR detection of Vibrio parahaemolyticus by genome comparison. J Rapid Meth Automation Microbiol 17, 67-79 .10.1111/j.1745-4581.2009.00158.x
AI Summary AI Mindmap
PDF(344 KB)

Accesses

Citations

Detail

Sections
Recommended

/