[1] Alberti, S., Halfmann, R., King, O., Kapila, A., and Lindquist, S. (2009). A systematic survey identifies prions and illuminates sequence features of prionogenic proteins.
Cell 137, 146-158 .19345193
[2] Ayala, Y.M., Zago, P., D’Ambrogio, A., Xu, Y.F., Petrucelli, L., Buratti, E., and Baralle, F.E. (2008). Structural determinants of the cellular localization and shuttling of TDP-43.
J Cell Sci 121, 3778-3785 .18957508
[3] Bharadwaj, P., Martins, R., and Macreadie, I. (2010). Yeast as a model for studying Alzheimer's disease.
FEMS Yeast Res 10, 961-969 .
[4] Bosco, D.A., Lemay, N., Ko, H.K., Zhou, H., Burke, C., Kwiatkowski, T.J. Jr, Sapp, P., McKenna-Yasek, D., Brown, R.H. Jr, and Hayward, L.J. (2010). Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules.
Hum Mol Genet 19, 4160-4175 .20699327
[5] Braun, R.J., Büttner, S., Ring, J., Kroemer, G., and Madeo, F. (2010). Nervous yeast: modeling neurotoxic cell death.
Trends Biochem Sci 35, 135-144 .19926288
[6] Buchan, J.R., Muhlrad, D., and Parker, R. (2008). P bodies promote stress granule assembly in Saccharomyces cerevisiae.
J Cell Biol 183, 441-455 .18981231
[7] Buchan, J.R., and Parker, R. (2009). Eukaryotic stress granules: the ins and outs of translation.
Mol Cell 36, 932-941 .20064460
[8] Chernoff, Y.O., Galkin, A.P., Lewitin, E., Chernova, T.A., Newnam, G.P., and Belenkiy, S.M. (2000). Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein.
Mol Microbiol 35, 865-876 .10692163
[9] Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G., and Liebman, S.W. (1995). Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+].
Science 268, 880-884 .7754373
[10] Colombrita, C., Zennaro, E., Fallini, C., Weber, M., Sommacal, A., Buratti, E., Silani, V., and Ratti, A. (2009). TDP-43 is recruited to stress granules in conditions of oxidative insult.
J Neurochem 111, 1051-1061 .19765185
[11] Cooper, A.A., Gitler, A.D., Cashikar, A., Haynes, C.M., Hill, K.J., Bhullar, B., Liu, K., Xu, K., Strathearn, K.E., Liu, F.,
(2006). Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models.
Science 313, 324-328 .16794039
[12] Cushman, M., Johnson, B.S., King, O.D., Gitler, A.D., and Shorter, J. (2010). Prion-like disorders: blurring the divide between transmissibility and infectivity.
J Cell Sci 123, 1191-1201 .20356930
[13] Deng, H.X., Zhai, H., Bigio, E.H., Yan, J., Fecto, F., Ajroud, K., Mishra, M., Ajroud-Driss, S., Heller, S., Sufit, R.,
(2010). FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis.
Ann Neurol 67, 739-748 .20517935
[14] Doi, H., Okamura, K., Bauer, P.O., Furukawa, Y., Shimizu, H., Kurosawa, M., Machida, Y., Miyazaki, H., Mitsui, K., Kuroiwa, Y.,
(2008). RNA-binding protein TLS is a major nuclear aggregate-interacting protein in huntingtin exon 1 with expanded polyglutamine-expressing cells.
J Biol Chem 283, 6489-6500 .18167354
[15] Duennwald, M.L., and Lindquist, S. (2008). Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity.
Genes Dev 22, 3308-3319 .19015277
[16] Elden, A.C., Kim, H.J., Hart, M.P., Chen-Plotkin, A.S., Johnson, B.S., Fang, X., Armakola, M., Geser, F., Greene, R., Lu, M.M.,
(2010). Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS.
Nature 466, 1069-1075 .20740007
[17] Fuentealba, R.A., Udan, M., Bell, S., Wegorzewska, I., Shao, J., Diamond, M.I., Weihl, C.C., and Baloh, R.H. (2010). Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43.
J Biol Chem 285, 26304-26314 .20554523
[18] Fushimi, K., Long, C., Jayaram, N., Chen, X., Li, L., and Wu, J.Y. (2011). Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy.
Protein Cell 2, 141-149
[19] Gal, J., Zhang, J., Kwinter, D.M., Zhai, J., Jia, H., Jia, J., and Zhu, H. (2010). Nuclear localization sequence of FUS and induction of stress granules by ALS mutants.
Neurobiol Aging .
Jul29. [Epub ahead of print].
10.1016/ j.neurobiolaging.2010.06.010.[20] Iko, Y., Kodama, T.S., Kasai, N., Oyama, T., Morita, E.H., Muto, T., Okumura, M., Fujii, R., Takumi, T., Tate, S.,
(2004). Domain architectures and characterization of an RNA-binding protein, TLS.
J Biol Chem 279, 44834-44840 .15299008
[21] Ito, D., Seki, M., Tsunoda, Y., Uchiyama, H., and Suzuki, N. (2011). Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS.
Ann Neurol 69, 152-162 .21280085
[22] Johnson, B.S., McCaffery, J.M., Lindquist, S., and Gitler, A.D. (2008). A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity.
Proc Natl Acad Sci U S A 105, 6439-6444 .18434538
[23] Kaganovich, D., Kopito, R., and Frydman, J. (2008). Misfolded proteins partition between two distinct quality control compartments.
Nature 454, 1088-1095 .18756251
[24] Khurana, V., and Lindquist, S. (2010). Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker’s yeast?
Nat Rev Neurosci 11, 436-449 .20424620
[25] Kim, S.H., Shanware, N.P., Bowler, M.J., and Tibbetts, R.S. (2010). Amyotrophic lateral sclerosis-associated proteins TDP-43 and FUS/TLS function in a common biochemical complex to co-regulate HDAC6 mRNA.
J Biol Chem 285, 34097-34105 .20720006
[26] Krobitsch, S., and Lindquist, S. (2000). Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins.
Proc Natl Acad Sci U S A 97, 1589-1594 .10677504
[27] Kryndushkin, D.S., Alexandrov, I.M., Ter-Avanesyan, M.D., and Kushnirov, V.V. (2003). Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104.
J Biol Chem 278, 49636-49643 .14507919
[28] Kushnirov, V.V., Alexandrov, I.M., Mitkevich, O.V., Shkundina, I.S., and Ter-Avanesyan, M.D. (2006). Purification and analysis of prion and amyloid aggregates.
Methods 39, 50-55 .16774835
[29] Kushnirov, V.V., Kochneva-Pervukhova, N.V., Chechenova, M.B., Frolova, N.S., and Ter-Avanesyan, M.D. (2000). Prion properties of the Sup35 protein of yeast Pichia methanolica.
EMBO J 19, 324-331 .10654931
[30] Kwiatkowski, T.J. Jr, Bosco, D.A., Leclerc, A.L., Tamrazian, E., Vanderburg, C.R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E.J., Munsat, T.,
(2009). Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis.
Science 323, 1205-1208 .19251627
[31] Lagier-Tourenne, C., Polymenidou, M., and Cleveland, D.W. (2010). TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration.
Hum Mol Genet 19, R46-R64 .20400460
[32] Ling, S.C., Albuquerque, C.P., Han, J.S., Lagier-Tourenne, C., Tokunaga, S., Zhou, H., and Cleveland, D.W. (2010). ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS.
Proc Natl Acad Sci U S A 107, 13318-13323 .20624952
[33] McGlinchey, R., Kryndushkin, D., and Wickner, R.B. (2011). Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci U S A. (In press)
[34] Meriin, A.B., Zhang, X., He, X., Newnam, G.P., Chernoff, Y.O., and Sherman, M.Y. (2002). Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1.
J Cell Biol 157, 997-1004 .12058016
[35] Meriin, A.B., Zhang, X., Miliaras, N.B., Kazantsev, A., Chernoff, Y.O., McCaffery, J.M., Wendland, B., and Sherman, M.Y. (2003). Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis.
Mol Cell Biol 23, 7554-7565 .14560003
[36] Muchowski, P.J., Schaffar, G., Sittler, A., Wanker, E.E., Hayer-Hartl, M.K., and Hartl, F.U. (2000). Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils.
Proc Natl Acad Sci U S A 97, 7841-7846 .10859365
[37] Neumann, M., Roeber, S., Kretzschmar, H.A., Rademakers, R., Baker, M., and Mackenzie, I.R. (2009). Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease.
Acta Neuropathol 118, 605-616 .19669651
[38] Nonhoff, U., Ralser, M., Welzel, F., Piccini, I., Balzereit, D., Yaspo, M.L., Lehrach, H., and Krobitsch, S. (2007). Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules.
Mol Biol Cell 18, 1385-1396 .17392519
[39] Outeiro, T.F., and Lindquist, S. (2003). Yeast cells provide insight into alpha-synuclein biology and pathobiology.
Science 302, 1772-1775 .14657500
[40] Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O’Regan, J.P., Deng, H.X.,
(1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.
Nature 362, 59-62 .8446170
[41] Salnikova, A.B., Kryndushkin, D.S., Smirnov, V.N., Kushnirov, V.V., and Ter-Avanesyan, M.D. (2005). Nonsense suppression in yeast cells overproducing Sup35 (eRF3) is caused by its non-heritable amyloids.
J Biol Chem 280, 8808-8812 .15618222
[42] Santoso, A., Chien, P., Osherovich, L.Z., and Weissman, J.S. (2000). Molecular basis of a yeast prion species barrier.
Cell 100, 277-288 .10660050
[43] Serio, T.R., Cashikar, A.G., Kowal, A.S., Sawicki, G.J., Moslehi, J.J., Serpell, L., Arnsdorf, M.F., and Lindquist, S.L. (2000). Nucleated conformational conversion and the replication of conformational information by a prion determinant.
Science 289, 1317-1321 .10958771
[44] Sharma, N., Brandis, K.A., Herrera, S.K., Johnson, B.E., Vaidya, T., Shrestha, R., and Debburman, S.K. (2006). alpha-Synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress.
J Mol Neurosci 28, 161-178 .16679556
[45] Speransky, V.V., Taylor, K.L., Edskes, H.K., Wickner, R.B., and Steven, A.C. (2001). Prion filament networks in [URE3] cells of Saccharomyces cerevisiae.
J Cell Biol 153, 1327-1336 .11402074
[46] Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J.C., Williams, K.L., Buratti, E.,
(2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis.
Science 319, 1668-1672 .18309045
[47] Toombs, J.A., McCarty, B.R., and Ross, E.D. (2010). Compositional determinants of prion formation in yeast.
Mol Cell Biol 30, 319-332 .19884345
[48] Udan, M., and Baloh, R.H. (2011). Implications of the prion-related Q/N domains in TDP-43 and FUS.
Prion 5, 1-5 .21135580
[49] Vance, C., Rogelj, B., Hortobágyi, T., De Vos, K.J., Nishimura, A.L., Sreedharan, J., Hu, X., Smith, B., Ruddy, D., Wright, P.,
(2009). Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6.
Science 323, 1208-1211 .19251628
[50] Wickner, R.B., Edskes, H.K., and Shewmaker, F. (2006). How to find a prion: [URE3], [PSI+] and [beta]. [beta]
Methods 39, 3-8 .16793280
[51] Wickner, R.B., Shewmaker, F., Edskes, H., Kryndushkin, D., Nemecek, J., McGlinchey, R., Bateman, D., and Winchester, C.L. (2010). Prion amyloid structure explains templating: how proteins can be genes.
FEMS Yeast Res 10, 980-991 .20726897
[52] Woulfe, J., Gray, D.A., and Mackenzie, I.R. (2010). FUS-immunoreactive intranuclear inclusions in neurodegenerative disease.
Brain Pathol 20, 589-597 .19832837
[53] Yeger-Lotem, E., Riva, L., Su, L.J., Gitler, A.D., Cashikar, A.G., King, O.D., Auluck, P.K., Geddie, M.L., Valastyan, J.S., Karger, D.R.,
(2009). Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity.
Nat Genet 41, 316-323 .19234470
[54] Zinszner, H., Sok, J., Immanuel, D., Yin, Y., and Ron, D. (1997). TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling.
J Cell Sci 110, 1741-1750 .9264461