C-reactive protein functions as a negative regulator of macrophage activation induced by apoptotic DNA

Weijuan Zhang1, Yanxing Cai1, Wei Xu1, Sidong Xiong1,2()

PDF(396 KB)
PDF(396 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (8) : 672-679. DOI: 10.1007/s13238-011-1084-4
RESEARCH ARTICLE
RESEARCH ARTICLE

C-reactive protein functions as a negative regulator of macrophage activation induced by apoptotic DNA

  • Weijuan Zhang1, Yanxing Cai1, Wei Xu1, Sidong Xiong1,2()
Author information +
History +

Abstract

C-reactive protein (CRP), an acute-phase protein with an ability to bind to nuclear antigen, has been reported to regulate cytokine secretion and modulate immune responses. We previously reported that activated syngeneic lymphocyte-derived apoptotic DNA (apopDNA) could induce macrophage activation and contribute to the initiation and progression of lupus nephritis. It is reasonable to hypothesize that CRP might regulate apopDNA-induced macrophage activation. Herein, CRP was shown to promote macrophage-mediated apopDNA uptake by binding to apopDNA (CRP/apopDNA complex). Notably, CRP/apopDNA treatment inhibited the production of inflammatory cytokines and chemokines by macrophages which could be induced by apopDNA alone. Further coculture and transwell studies revealed that CRP/apopDNA-induced macrophages prohibited apopDNA-induced macrophage activation in an IL-10 dependent manner. These results provide insight into the potential mechanism of CRP regulatory activity in macrophage activation induced by apopDNA in the context of lupus nephritis and other autoimmune diseases.

Keywords

C-reactive protein (CRP) / macrophage activation / autoimmunity / systemic lupus erythematosus (SLE) / lupus nephritis

Cite this article

Download citation ▾
Weijuan Zhang, Yanxing Cai, Wei Xu, Sidong Xiong. C-reactive protein functions as a negative regulator of macrophage activation induced by apoptotic DNA. Prot Cell, 2011, 2(8): 672‒679 https://doi.org/10.1007/s13238-011-1084-4

References

[1] Bottazzi, B., Doni, A., Garlanda, C., and Mantovani, A. (2010). An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol 28, 157–183 .19968561
[2] Chen, M., Zhang, W., Xu, W., Zhang, F., and Xiong, S. (2011). Blockade of TLR9 signaling in B cells impaired anti-dsDNA antibody production in mice induced by activated syngenic lymphocyte-derived DNA immunization. Mol Immunol 48, 1532–1539 .21592581
[3] Chung, E.Y., Liu, J., Homma, Y., Zhang, Y., Brendolan, A., Saggese, M., Han, J., Silverstein, R., Selleri, L., and Ma, X. (2007). Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity 27, 952–964 .18093541
[4] Du Clos, T.W. (1989). C-reactive protein reacts with the U1 small nuclear ribonucleoprotein. J Immunol 143, 2553–2559 .2477447
[5] Estabrook, M.M., Jack, D.L., Klein, N.J., and Jarvis, G.A. (2004). Mannose-binding lectin binds to two major outer membrane proteins, opacity protein and porin, of Neisseria meningitidis. J Immunol 172, 3784–3792 .15004183
[6] Garlanda, C., Bottazzi, B., Bastone, A., and Mantovani, A. (2005). Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol 23, 337–366 .15771574
[7] Ito, T., Schaller, M., Hogaboam, C.M., Standiford, T.J., Sandor, M., Lukacs, N.W., Chensue, S.W., and Kunkel, S.L. (2009). TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4. J Clin Invest 119, 33–46 .19075396
[8] Kaplan, M.J. (2004). Apoptosis in systemic lupus erythematosus. Clin Immunol 112, 210–218 .15308111
[9] Li, K., Xu, W., Guo, Q., Jiang, Z., Wang, P., Yue, Y., and Xiong, S. (2009). Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res 105, 353–364 .19608981
[10] Marjon, K.D., Marnell, L.L., Mold, C., and Du Clos, T.W. (2009). Macrophages activated by C-reactive protein through Fc gamma RI transfer suppression of immune thrombocytopenia. J Immunol 182, 1397–1403 .19155486
[11] Mevorach, D., Zhou, J.L., Song, X., and Elkon, K.B. (1998). Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med 188, 387–392 .9670050
[12] Mohan, C., Adams, S., Stanik, V., and Datta, S.K. (1993). Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med 177, 1367–1381 .8478612
[13] Mold, C., Gresham, H.D., and Du Clos, T.W. (2001). Serum amyloid P component and C-reactive protein mediate phagocytosis through murine Fc gamma Rs. J Immunol 166, 1200–1205 .11145702
[14] Mukundan, L., Odegaard, J.I., Morel, C.R., Heredia, J.E., Mwangi, J.W., Ricardo-Gonzalez, R.R., Goh, Y.P., Eagle, A.R., Dunn, S.E., Awakuni, J.U., (2009). PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat Med 15, 1266–1272 .19838202
[15] Ogden, C.A., and Elkon, K.B. (2005). Single-dose therapy for lupus nephritis: C-reactive protein, nature’s own dual scavenger and immunosuppressant. Arthritis Rheum 52, 378–381 .15692995
[16] Qiao, B., Wu, J., Chu, Y.W., Wang, Y., Wang, D.P., Wu, H.S., and Xiong, S.D. (2005). Induction of systemic lupus erythematosus-like syndrome in syngeneic mice by immunization with activated lymphocyte-derived DNA. Rheumatology (Oxford) 44, 1108–1114 .15840592
[17] Rahman, A., and Isenberg, D.A. (2008). Systemic lupus erythematosus. N Engl J Med 358, 929–939 .18305268
[18] Rodriguez, W., Mold, C., Kataranovski, M., Hutt, J., Marnell, L.L., and Du Clos, T.W. (2005). Reversal of ongoing proteinuria in autoimmune mice by treatment with C-reactive protein. Arthritis Rheum 52, 642–650 .15692982
[19] Rodriguez, W., Mold, C., Kataranovski, M., Hutt, J.A., Marnell, L.L., Verbeek, J.S., and Du Clos, T.W. (2007). C-reactive protein-mediated suppression of nephrotoxic nephritis: role of macrophages, complement, and Fcgamma receptors. J Immunol 178, 530–538 .17182593
[20] Rodriguez, W., Mold, C., Marnell, L.L., Hutt, J., Silverman, G.J., Tran, D., and Du Clos, T.W. (2006). Prevention and reversal of nephritis in MRL/lpr mice with a single injection of C-reactive protein. Arthritis Rheum 54, 325–335 .16385552
[21] Saraiva, M., and O’Garra, A. (2010). The regulation of IL-10 production by immune cells. Nat Rev Immunol 10, 170–181 .20154735
[22] Singh, U., Devaraj, S., Dasu, M.R., Ciobanu, D., Reusch, J., and Jialal, I. (2006). C-reactive protein decreases interleukin-10 secretion in activated human monocyte-derived macrophages via inhibition of cyclic AMP production. Arterioscler Thromb Vasc Biol 26, 2469–2475 .16917108
[23] Taylor, P.R., Carugati, A., Fadok, V.A., Cook, H.T., Andrews, M., Carroll, M.C., Savill, J.S., Henson, P.M., Botto, M., and Walport, M.J. (2000). A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med 192, 359–366 .10934224
[24] Walport, M.J. (2000). Lupus, DNase and defective disposal of cellular debris. Nat Genet 25, 135–136 .10835621
[25] Wen, Z.K., Xu, W., Xu, L., Cao, Q.H., Wang, Y., Chu, Y.W., and Xiong, S.D. (2007). DNA hypomethylation is crucial for apoptotic DNA to induce systemic lupus erythematosus-like autoimmune disease in SLE-non-susceptible mice. Rheumatology (Oxford) 46, 1796–1803 .18032537
[26] Xia, D., and Samols, D. (1997). Transgenic mice expressing rabbit C-reactive protein are resistant to endotoxemia. Proc Natl Acad Sci U S A 94, 2575–2580 .9122237
[27] Xu, J., Yun, X., Jiang, J., Wei, Y., Wu, Y., Zhang, W., Liu, Y., Wang, W., Wen, Y., and Gu, J. (2010). Hepatitis B virus X protein blunts senescence-like growth arrest of human hepatocellular carcinoma by reducing Notch1 cleavage. Hepatology 52, 142–154 .20578140
[28] Zhang, W., Xu, W., and Xiong, S. (2010). Blockade of Notch1 signaling alleviates murine lupus via blunting macrophage activation and M2b polarization. J Immunol 184, 6465–6478 .20427764
AI Summary AI Mindmap
PDF(396 KB)

Accesses

Citations

Detail

Sections
Recommended

/