CCAAT/enhancer binding proteins play a role in oriLyt-dependent genome replication during MHV-68 de novo infection

Jing Qi1, Danyang Gong1, Hongyu Deng2()

PDF(365 KB)
PDF(365 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (6) : 463-469. DOI: 10.1007/s13238-011-1060-z
COMMUNICATION
COMMUNICATION

CCAAT/enhancer binding proteins play a role in oriLyt-dependent genome replication during MHV-68 de novo infection

  • Jing Qi1, Danyang Gong1, Hongyu Deng2()
Author information +
History +

Abstract

Murine gammaherpesvirus 68 (MHV-68), a member of the gammaherpesvirus family, replicates robustly in permissive cell lines and is able to infect laboratory mice. MHV-68 has emerged as a model for studying the basic aspects of viral replication and host–virus interactions of its human counterparts. Herpesvirus genome replication is mediated through a cis-element in the viral genome called the origin of lytic replication (oriLyt). A family of transcription factors, CCAAT/enhancer binding proteins (C/EBPs), assists in oriLyt-mediated DNA replication during gammaherpesvirus reactivation. In this study, we examined the role of C/EBPs in gammaherpesvirus DNA replication during de novo infection, using MHV-68 as a model. We found that C/EBP α and β bind to the CCAAT boxes in the MHV-68 oriLyt core region both in vitro and in vivo, as demonstrated by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. A dominant negative form of C/EBPs significantly impaired the lytic replication efficiency of MHV-68 on both the plasmid and genome levels in a replication assay, indicating that functional C/EBPs are required for maximal MHV-68 genome DNA replication. Collectively, our data demonstrate that C/EBPs interact with the oriLyt core region and play an important role in MHV-68 lytic DNA replication during de novo infection.

Keywords

C/EBPs / murine gammaherpesvirus 68 / oriLyt / lytic replication

Cite this article

Download citation ▾
Jing Qi, Danyang Gong, Hongyu Deng. CCAAT/enhancer binding proteins play a role in oriLyt-dependent genome replication during MHV-68 de novo infection. Prot Cell, 2011, 2(6): 463‒469 https://doi.org/10.1007/s13238-011-1060-z

References

[1] Collins , C.M., Medveczky , M.M., Lund , T., and Medveczky , P.G. (2002). The terminal repeats and latency-associated nuclear antigen of herpesvirus saimiri are essential for episomal persistence of the viral genome. J Gen Virol 83, 2269-2278 .12185282
[2] Deng , H., Chu , J.T., Park , N.H., and Sun , R. (2004). Identification of cis sequences required for lytic DNA replication and packaging of murine gammaherpesvirus 68. J Virol 78, 9123-9131 .15308708
[3] Efstathiou , S., Ho , Y.M., Hall , S., Styles , C.J., Scott , S.D., and Gompels , U.A. (1990). Murine herpesvirus 68 is genetically related to the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri. J Gen Virol 71, 1365-1372 .2161903
[4] Gong , D., Qi , J., Arumugaswami , V., Sun , R., and Deng , H. (2009). Identification and functional characterization of the left origin of lytic replication of murine gammaherpesvirus 68. Virology 387, 285-295 .19285330
[5] Hu , J., and Renne , R. (2005). Characterization of the minimal replicator of Kaposi’s sarcoma-associated herpesvirus latent origin. J Virol 79, 2637-2642 .15681465
[6] Huang , J., Liao , G., Chen , H., Wu , F.Y., Hutt-Fletcher , L., Hayward , G.S., and Hayward , S.D. (2006). Contribution of C/EBP proteins to Epstein-Barr virus lytic gene expression and replication in epithelial cells. J Virol 80, 1098-1109 .16414987
[7] Kieff , E., and Rickinson , A.B. (2001). Epstein-Barr virus and its replication . In: Fields Virology . D.M.K.a.P.M. Howley, ed. Philadelphia, Pa.: Lippincott Williams & Wilkins. 2511-2627 .
[8] Landschulz , W.H., Johnson , P.F., and McKnight , S.L. (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759-1764 .3289117
[9] Mocarski , E.S.J., and Courcelle , C.T. (2001). Cytomegaloviruses and their replication . In: Fields Virology . D.M.K.a.P.M. Howley, ed. Philadelphia, Pa.: Lippincott Williams & Wilkins. 2629-2673 .
[10] Moore , P.S., and Chang , Y. (2001). Kaposi’s sarcoma-associated herpesvirus . In: Fields Virology , P.M.H. D. M. Knipe, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman, and S. E. Straus, ed. Philadelphia, Pa.: Lippincott Williams and Wilkins. 2803-2833 .
[11] Ramji , D.P., and Foka , P. (2002). CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365, 561-575 .12006103
[12] Roizman , B., and Knipe , D.M. (2001a). Herpes simplex viruses and their replication . In: Fields Virology . D.M.K.a.P.M. Howley, ed. Philadelphia, Pa.: Lippincott Williams & Wilkins. 2399-2460 .
[13] Roizman , B., and Pellett , P.E. (2001b). Herpesviridae: a brief introduction . In: Fields Virology . B.N. Fields, D.M., Knipe, P.M., Howley, , ed. Philadelphia, Pa.: Lippincott Williams and Wilkins. 2381-2398 .
[14] Schreiber , E., Matthias , P., Müller , M.M., and Schaffner , W. (1989). Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res 17, 6419.2771659
[15] Simas , J.P., and Efstathiou , S. (1998). Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol 6, 276-282 .9717216
[16] Virgin , H.W. 4th, Latreille , P., Wamsley , P., Hallsworth , K., Weck , K.E., Dal Canto , A.J., and Speck , S.H. (1997). Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71, 5894-5904 .9223479
[17] Wang , Y., Li , H., Chan , M.Y., Zhu , F.X., Lukac , D.M., and Yuan , Y. (2004). Kaposi’s sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: cis-acting requirements for replication and ori-Lyt-associated RNA transcription. J Virol 78, 8615-8629 .15280471
[18] Wu , F.Y., Wang , S.E., Tang , Q.Q., Fujimuro , M., Chiou , C.J., Zheng , Q., Chen , H., Hayward , S.D., Lane , M.D., and Hayward , G.S. (2003). Cell cycle arrest by Kaposi’s sarcoma-associated herpesvirus replication-associated protein is mediated at both the transcriptional and posttranslational levels by binding to CCAAT/enhancer-binding protein alpha and p21(CIP-1). J Virol 77, 8893-8914 .12885907
[19] Xu , Y., Zhou , Y.L., Luo , W., Zhu , Q.S., Levy , D., MacDougald , O.A., and Snead , M.L. (2006). NF-Y and CCAAT/enhancer-binding protein alpha synergistically activate the mouse amelogenin gene. J Biol Chem 281, 16090-16098 .16595692
AI Summary AI Mindmap
PDF(365 KB)

Accesses

Citations

Detail

Sections
Recommended

/