Structural study of the Cdc25 domain from Ral-specific guanine-nucleotide exchange factor RalGPS1a

Wei Peng, Jiwei Xu, Xiaotao Guan, Yao Sun, Xuejun C. Zhang, Xuemei Li, Zihe Rao()

PDF(1020 KB)
PDF(1020 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (4) : 308-319. DOI: 10.1007/s13238-011-1036-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural study of the Cdc25 domain from Ral-specific guanine-nucleotide exchange factor RalGPS1a

  • Wei Peng, Jiwei Xu, Xiaotao Guan, Yao Sun, Xuejun C. Zhang, Xuemei Li, Zihe Rao()
Author information +
History +

Abstract

The guanine-nucleotide exchange factor (GEF) RalGPS1a activates small GTPase Ral proteins such as RalA and RalB by stimulating the exchange of Ral bound GDP to GTP, thus regulating various downstream cellular processes. RalGPS1a is composed of an N-terminal Cdc25-like catalytic domain, followed by a PXXP motif and a C-terminal pleckstrin homology (PH) domain. The Cdc25 domain of RalGPS1a, which shares about 30% sequence identity with other Cdc25-domain proteins, is thought to be directly engaged in binding and activating the substrate Ral protein. Here we report the crystal structure of the Cdc25 domain of RalGPS1a. The bowl shaped structure is homologous to the Cdc25 domains of SOS and RasGRF1. The most remarkable difference between these three Cdc25 domains lies in their active sites, referred to as the helical hairpin region. Consistent with previous enzymological studies, the helical hairpin of RalGPS1a adopts a conformation favorable for substrate binding. A modeled RalGPS1a-RalA complex structure reveals an extensive binding surface similar to that of the SOS-Ras complex. However, analysis of the electrostatic surface potential suggests an interaction mode between the RalGPS1a active site helical hairpin and the switch 1 region of substrate RalA distinct from that of the SOS-Ras complex.

Keywords

RalGPS1a / RalA / cdc25 domain / crystal structure

Cite this article

Download citation ▾
Wei Peng, Jiwei Xu, Xiaotao Guan, Yao Sun, Xuejun C. Zhang, Xuemei Li, Zihe Rao. Structural study of the Cdc25 domain from Ral-specific guanine-nucleotide exchange factor RalGPS1a. Prot Cell, 2011, 2(4): 308‒319 https://doi.org/10.1007/s13238-011-1036-z

References

[1] Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221 .20124702
[2] Albright, C.F., Giddings, B.W., Liu, J., Vito, M., and Weinberg, R.A. (1993). Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J 12, 339-347 .8094051
[3] Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201 .16301204
[4] Bodemann, B.O., and White, M.A. (2008). Ral GTPases and cancer: linchpin support of the tumorigenic platform. Nat Rev Cancer 8, 133-140 .18219307
[5] Boguski, M.S., and McCormick, F. (1993). Proteins regulating Ras and its relatives. Nature 366, 643-654 .8259209
[6] Boriack-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D., and Kuriyan, J. (1998). The structural basis of the activation of Ras by Sos. Nature 394, 337-343 .9690470
[7] Broek, D., Toda, T., Michaeli, T., Levin, L., Birchmeier, C., Zoller, M., Powers, S., and Wigler, M. (1987). The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48, 789-799 .3545497
[8] Cascone, I., Selimoglu, R., Ozdemir, C., Del Nery, E., Yeaman, C., White, M., and Camonis, J. (2008). Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. EMBO J 27, 2375-2387 .18756269
[9] Ceriani, M., Scandiuzzi, C., Amigoni, L., Tisi, R., Berruti, G., and Martegani, E. (2007). Functional analysis of RalGPS2, a murine guanine nucleotide exchange factor for RalA GTPase. Exp Cell Res 313, 2293-2307 .17462626
[10] Chardin, P., and Tavitian, A. (1986). The ral gene: a new ras related gene isolated by the use of a synthetic probe. EMBO J 5, 2203-2208 .3023062
[11] Chien, Y., and White, M.A. (2003). RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep 4, 800-806 .12856001
[12] Colicelli, J. (2004). Human RAS superfamily proteins and related GTPases. Sci STKE 2004, RE13.15367757
[13] de Bruyn, K.M., de Rooij, J., Wolthuis, R.M., Rehmann, H., Wesenbeek, J., Cool, R.H., Wittinghofer, A.H., and Bos, J.L. (2000). RalGEF2, a pleckstrin homology domain containing guanine nucleotide exchange factor for Ral. J Biol Chem 275, 29761-29766 .10889189
[14] de Rooij, J., Rehmann, H., van Triest, M., Cool, R.H., Wittinghofer, A., and Bos, J.L. (2000). Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem 275, 20829-20836 .10777494
[15] DeLano, W.L. (2002). The PyMOL Molecular Graphics System. San Carlos , CA: DeLano Scientific.
[16] Emanuelsson, O., Brunak, S., von Heijne, G., and Nielsen, H. (2007). Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2, 953-971 .17446895
[17] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 .15572765
[18] Freedman, T.S., Sondermann, H., Friedland, G.D., Kortemme, T., Bar-Sagi, D., Marqusee, S., and Kuriyan, J. (2006). A Ras-induced conformational switch in the Ras activator Son of sevenless. Proc Natl Acad Sci U S A 103, 16692-16697 .17075039
[19] Gouet, P., Courcelle, E., Stuart, D.I., and Métoz, F. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-308 .10320398
[20] Hall, B.E., Yang, S.S., Boriack-Sjodin, P.A., Kuriyan, J., and Bar-Sagi, D. (2001). Structure-based mutagenesis reveals distinct functions for Ras switch 1 and switch 2 in Sos-catalyzed guanine nucleotide exchange. J Biol Chem 276, 27629-27637 .11333268
[21] Laskowski, R.A., Macarthur, M.W., Moss, D.S., and Thornton, J.M. (1993). Procheck- a Program to Check the Stereochemical Quality of Protein Structures. J Appl Cryst 26, 283-291 .
[22] Lim, K.H., Baines, A.T., Fiordalisi, J.J., Shipitsin, M., Feig, L.A., Cox, A.D., Der, C.J., and Counter, C.M. (2005). Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 7, 533-545 .15950903
[23] Lo Conte, L., Chothia, C., and Janin, J. (1999). The atomic structure of protein-protein recognition sites. J Mol Biol 285, 2177-2198 .9925793
[24] Lyskov, S., and Gray, J.J. (2008). The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36, W233-238 .18442991
[25] Margarit, S.M., Sondermann, H., Hall, B.E., Nagar, B., Hoelz, A., Pirruccello, M., Bar-Sagi, D., and Kuriyan, J. (2003). Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685-695 .12628188
[26] Matthews, B.W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491-497 .5700707
[27] McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674 .19461840
[28] Moskalenko, S., Henry, D.O., Rosse, C., Mirey, G., Camonis, J.H., and White, M.A. (2002). The exocyst is a Ral effector complex. Nat Cell Biol 4, 66-72 .11740492
[29] Murai, H., Ikeda, M., Kishida, S., Ishida, O., Okazaki-Kishida, M., Matsuura, Y., and Kikuchi, A. (1997). Characterization of Ral GDP dissociation stimulator-like (RGL) activities to regulate c-fos promoter and the GDP/GTP exchange of Ral. J Biol Chem 272, 10483-10490 .9099691
[30] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, Pt A 276, 307-326 .
[31] Quilliam, L.A. (2006). Specificity and expression of RalGPS as RalGEFs. Methods Enzymol 407, 108-114 .16757318
[32] Rameh, L.E., Arvidsson, A., Carraway, K.L. 3rd, Couvillon, A.D., Rathbun, G., Crompton, A., VanRenterghem, B., Czech, M.P., Ravichandran, K.S., Burakoff, S.J., (1997). A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem 272, 22059-22066 .9268346
[33] Rangarajan, A., Hong, S.J., Gifford, A., and Weinberg, R.A. (2004). Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6, 171-183 .15324700
[34] Rebhun, J.F., Chen, H., and Quilliam, L.A. (2000). Identification and characterization of a new family of guanine nucleotide exchange factors for the ras-related GTPase Ral. J Biol Chem 275, 13406-13410 .10747847
[35] Rehmann, H., Das, J., Knipscheer, P., Wittinghofer, A., and Bos, J.L. (2006). Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 439, 625-628 .16452984
[36] Terwilliger, T.C. (2003). Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr D Biol Crystallogr 59, 38-44 .12499537
[37] Wilbur, W.J., and Lipman, D.J. (1983). Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci U S A 80, 726-730 .6572363
[38] Wolthuis, R.M., de Ruiter, N.D., Cool, R.H., and Bos, J.L. (1997). Stimulation of gene induction and cell growth by the Ras effector Rlf. EMBO J 16, 6748-6761 .9362489
[39] Zhang, X.J., and Matthews, B.W. (1995). Edpdb- a Multifunctional Tool for Protein-Structure Analysis. J Appl Cryst 28, 624-630 .
AI Summary AI Mindmap
PDF(1020 KB)

Accesses

Citations

Detail

Sections
Recommended

/