Proteomic and transcriptomic analysis of visual long-term memory in Drosophila melanogaster

Huoqing Jiang1,2, Qinlong Hou1,2, Zhefeng Gong1(), Li Liu1,3()

PDF(182 KB)
PDF(182 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (3) : 215-222. DOI: 10.1007/s13238-011-1019-0
COMMUNICATION
COMMUNICATION

Proteomic and transcriptomic analysis of visual long-term memory in Drosophila melanogaster

  • Huoqing Jiang1,2, Qinlong Hou1,2, Zhefeng Gong1(), Li Liu1,3()
Author information +
History +

Abstract

The fruit fly, Drosophila melanogaster, is able to discriminate visual landmarks and form visual long-term memory in a flight simulator. Studies focused on the molecular mechanism of long-term memory have shown that memory formation requires mRNA transcription and protein synthesis. However, little is known about the molecular mechanisms underlying the visual learning paradigm. The present study demonstrated that both spaced training procedure (STP) and consecutive training procedure (CTP) would induce long-term memory at 12 hour after training, and STP caused significantly higher 12-h memory scores compared with CTP. Label-free quantification of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and microarray were utilized to analyze proteomic and transcriptomic differences between the STP and CTP groups. Proteomic analysis revealed 30 up-regulated and 27 down-regulated proteins; Transcriptomic analysis revealed 145 up-regulated and 129 down-regulated genes. Among them, five candidate genes were verified by quantitative PCR, which revealed results similar to microarray. These results provide insight into the molecular components influencing visual long-term memory and facilitate further studies on the roles of identified genes in memory formation.

Keywords

visual learning and memory / Drosophila / long-term memory / microarray / liquid chromatography-tandem mass spectrometry

Cite this article

Download citation ▾
Huoqing Jiang, Qinlong Hou, Zhefeng Gong, Li Liu. Proteomic and transcriptomic analysis of visual long-term memory in Drosophila melanogaster. Prot Cell, 2011, 2(3): 215‒222 https://doi.org/10.1007/s13238-011-1019-0

References

[1] Aberle, H., Haghighi, A.P., Fetter, R.D., McCabe, B.D., Magalh?es, T.R., and Goodman, C.S. (2002). wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558 .11856529
[2] Alberini, C.M. (2009). Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89, 121–145 .19126756
[3] Boquet, I., Boujemaa, R., Carlier, M.F., and Préat, T. (2000). Ciboulot regulates actin assembly during Drosophila brain metamorphosis. Cell 102, 797–808 .11030623
[4] Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254 .942051
[5] Comas, D., Petit, F., and Preat, T. (2004). Drosophila long-term memory formation involves regulation of cathepsin activity. Nature 430, 460–463 .15269770
[6] Costa-Mattioli, M., and Sonenberg, N. (2006). Translational control of long-term synaptic plasticity and memory storage by eIF2alpha. Crit Rev Neurobiol 18, 187–195 .17725521
[7] Davis, H.P., and Squire, L.R. (1984). Protein synthesis and memory: a review. Psychol Bull 96, 518–559 .6096908
[8] DeZazzo, J., and Tully, T. (1995). Dissection of memory formation: from behavioral pharmacology to molecular genetics. Trends Neurosci 18, 212–218 .7610491
[9] Dubnau, J., Chiang, A.S., Grady, L., Barditch, J., Gossweiler, S., McNeil, J., Smith, P., Buldoc, F., Scott, R., Certa, U., (2003). The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol 13, 286–296 .12593794
[10] Ge, X., Hannan, F., Xie, Z., Feng, C., Tully, T., Zhou, H., Xie, Z., and Zhong, Y. (2004). Notch signaling in Drosophila long-term memory formation. Proc Natl Acad Sci U S A 101, 10172–10176 .15220476
[11] Gong, Z., Xia, S., Liu, L., Feng, C., and Guo, A. (1998). Operant visual learning and memory in Drosophila mutants dunce, amnesiac and radish. J Insect Physiol 44, 1149–1158 .12770314
[12] Guo, A., Li, L., Xia, S.Z., Feng, C.H., Wolf, R., and Heisenberg, M. (1996). Conditioned visual flight orientation in Drosophila: dependence on age, practice, and diet. Learn Mem 3, 49–59 .10456076
[13] Hawkins, R.D., Kandel, E.R., and Bailey, C.H. (2006). Molecular mechanisms of memory storage in Aplysia. Biol Bull 210, 174–191 .16801493
[14] Heisenberg, M., and Wolf, R. (1984). Vision in Drosophila: genetics of microbehavior. Berlin; New York: Springer-Verlag.
[15] Ho, I.S., Hannan, F., Guo, H.F., Hakker, I., and Zhong, Y. (2007). Distinct functional domains of neurofibromatosis type 1 regulate immediate versus long-term memory formation. J Neurosci 27, 6852–6857 .17581973
[16] Keene, A.C., and Waddell, S. (2007). Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 8, 341–354 .17453015
[17] Kelly, A., Laroche, S., and Davis, S. (2003). Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci 23, 5354–5360 .12832561
[18] Keshishian, H., and Kim, Y.S. (2004). Orchestrating development and function: retrograde BMP signaling in the Drosophila nervous system. Trends Neurosci 27, 143–147 .15036879
[19] Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., Heisenberg, M., and Liu, L. (2006). Distinct memory traces for two visual features in the Drosophila brain. Nature 439, 551–556 .16452971
[20] Lu, Y., Lu, Y.S., Shuai, Y., Feng, C., Tully, T., Xie, Z., Zhong, Y., and Zhou, H.M. (2007). The AKAP Yu is required for olfactory long-term memory formation in Drosophila. Proc Natl Acad Sci U S A 104, 13792–13797 .17690248
[21] Margulies, C., Tully, T., and Dubnau, J. (2005). Deconstructing memory in Drosophila. Curr Biol 15, R700–R713 .16139203
[22] Matsuno, M., Horiuchi, J., Tully, T., and Saitoe, M. (2009). The Drosophila cell adhesion molecule klingon is required for long-term memory formation and is regulated by Notch. Proc Natl Acad Sci U S A 106, 310–315 .19104051
[23] Mayford, M., and Kandel, E.R. (1999). Genetic approaches to memory storage. Trends Genet 15, 463–470 .10529810
[24] Mazzucchelli, C., Vantaggiato, C., Ciamei, A., Fasano, S., Pakhotin, P., Krezel, W., Welzl, H., Wolfer, D.P., Pagès, G., Valverde, O., (2002). Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34, 807–820 .12062026
[25] Park, E.M., and Cho, S. (2006). Enhanced ERK dependent CREB activation reduces apoptosis in staurosporine-treated human neuroblastoma SK-N-BE(2)C cells. Neurosci Lett 402, 190–194 .16678346
[26] Presente, A., Boyles, R.S., Serway, C.N., de Belle, J.S., and Andres, A.J. (2004). Notch is required for long-term memory in Drosophila. Proc Natl Acad Sci U S A 101, 1764–1768 .14752200
[27] Rosenzweig, M.R., Bennett, E.L., Colombo, P.J., Lee, D.W., and Serrano, P.A. (1993). Short-term, intermediate-term, and long-term memories. Behav Brain Res 57, 193–198 .8117424
[28] Sharma, S.K., and Carew, T.J. (2004). The roles of MAPK cascades in synaptic plasticity and memory in Aplysia: facilitatory effects and inhibitory constraints. Learn Mem 11, 373–378 .15286179
[29] Stoscheck, C.M. (1990). Quantitation of protein. Methods Enzymol 182, 50–68 .2314256
[30] Walton, M.R., and Dragunow, I. (2000). Is CREB a key to neuronal survival? Trends Neurosci 23, 48–53 .10652539
[31] Wang, Z., Edwards, J.G., Riley, N., Provance, D.W. Jr, Karcher, R., Li, X.D., Davison, I.G., Ikebe, M., Mercer, J.A., Kauer, J.A., (2008b). Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135, 535–548 .18984164
[32] Wang, Z., Pan, Y., Li, W., Jiang, H., Chatzimanolis, L., Chang, J., Gong, Z., and Liu, L. (2008a). Visual pattern memory requires foraging function in the central complex of Drosophila. Learn Mem 15, 133–142 .18310460
[33] Wolf, R., and Heisenberg, M. (1991). Basic organization of operant behavior as revealed in Drosophila flight orientation. J Comp Physiol A 169, 699–705 .1795235
[34] Wu, C.L., Xia, S., Fu, T.F., Wang, H., Chen, Y.H., Leong, D., Chiang, A.S., and Tully, T. (2007). Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci 10, 1578–1586 .17982450
[35] Xia, S., Liu, L., Feng, C., and Guo, A. (1997). Memory consolidation in Drosophila operant visual learning. Learn Mem 4, 205–218 .10456064
[36] Xia, S., Miyashita, T., Fu, T.F., Lin, W.Y., Wu, C.L., Pyzocha, L., Lin, I.R., Saitoe, M., Tully, T., and Chiang, A.S. (2005). NMDA receptors mediate olfactory learning and memory in Drosophila. Curr Biol 15, 603–615 .15823532
[37] Xia, S.Z., Feng, C.H., and Guo, A.K. (1998). Multiple-phase model of memory consolidation confirmed by behavioral and pharmacological analyses of operant conditioning in Drosophila. Pharmacol Biochem Behav 60, 809–816 .9700962
[38] Yin, J.C., Wallach, J.S., Wilder, E.L., Klingensmith, J., Dang, D., Perrimon, N., Zhou, H., Tully, T., and Quinn, W.G. (1995). A Drosophila CREB/CREM homolog encodes multiple isoforms, including a cyclic AMP-dependent protein kinase-responsive transcriptional activator and antagonist. Mol Cell Biol 15, 5123–5130 .7651429
[39] Zhao, H., Zheng, X., Yuan, X., Wang, L., Wang, X., Zhong, Y., Xie, Z., and Tully, T. (2009). ben Functions with scamp during synaptic transmission and long-term memory formation in Drosophila. J Neurosci 29, 414–424 .19144841
AI Summary AI Mindmap
PDF(182 KB)

Accesses

Citations

Detail

Sections
Recommended

/