Human catalase: looking for complete identity

Madhur M. Goyal(), Anjan Basak

PDF(375 KB)
PDF(375 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (10) : 888-897. DOI: 10.1007/s13238-010-0113-z
REVIEW
REVIEW

Human catalase: looking for complete identity

  • Madhur M. Goyal(), Anjan Basak
Author information +
History +

Abstract

Catalases are well studied enzymes that play critical roles in protecting cells against the toxic effects of hydrogen peroxide. The ubiquity of the enzyme and the availability of substrates made heme catalases the focus of many biochemical and molecular biology studies over 100 years. In human, this has been implicated in various physiological and pathological conditions. Advancement in proteomics revealed many of novel and previously unknown features of this mysterious enzyme, but some functional aspects are yet to be explained. Along with discussion on future research area, this mini-review compile the information available on the structure, function and mechanism of action of human catalase.

Keywords

human catalase / structure and function / mechanism of action / futuristic research area

Cite this article

Download citation ▾
Madhur M. Goyal, Anjan Basak. Human catalase: looking for complete identity. Prot Cell, 2010, 1(10): 888‒897 https://doi.org/10.1007/s13238-010-0113-z

References

[1] Aebi, H.E., and Wyss, S.R. (1978). In the metabolic basis of inherited disease. Stanbury, J.B., Wyngaarden, J.B. and Fredrickson, D.S., eds. (McGraw-Hill, New York), pp. 1792-1807 .
[2] Agar, N.S., Sadrzadeh, S.M.H., Hallaway, P.E., and Eaton, J.W. (1986). Erythrocyte catalase. A somatic oxidant defense? J Clin Invest 77, 319-321 .10.1172/JCI112294
[3] Almarsson, O., Sinha, A., Gopinath, E., and Bruice, T.C. (1993). Mechanism of one-electron oxidation of NADPH and function of NADPH bound to catalase. J Am Chem Soc 115, 7093-7102 .10.1021/ja00069a005
[4] Amara, P., Andreoletti, P., Jouve, H.M., and Field, M.J. (2001). Ligand diffusion in the catalase from Proteus mirabilis: a molecular dynamics study. Protein Sci 10, 1927-1935 .10.1110/ps.14201
[5] Andersson, L.A., and Dawson, L.A. (1991). EXAFS spectroscopy of hemecontaining oxygenases and peroxidases. Structure and Bonding 64, 1-40 .
[6] Aragon, C.M., and Amit, Z. (1992). The effect of 3-amino-1,2,4-triazole on voluntary ethanol consumption: evidence for brain catalase involvement in the mechanism of action. Neuropharmacology 31, 709-712 .10.1016/0028-3908(92)90150-N
[7] Archibald, F.S., and Duong, M.N. (1986). Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria. Infect Immun 51, 631-641 .
[8] Bicout, D.J., Field, M.J., Gouet, P., and Jouve, H.M. (1995). Simulations of electron transfer in the NADPH-bound catalase from Proteus mirabilis PR. Biochim Biophys Acta 1252, 172-176 .
[9] Bishai, W.R., Smith, H.O., and Barcak, G.J. (1994). A peroxide/ascorbate-inducible catalase from Haemophilus influenzae is homologous to the Escherichia coli katE gene product. J Bacteriol 176, 2914-2921 .
[10] Bishai, W.R., Howard, N.S., Winkelstein, J.A., and Smith, H.O. (1994). Characterization and virulence analysis of catalase mutants of Haemophilus influenzae. Infect Immun 62, 4855-4860 .
[11] Bonaventura, J., Schroeder, W.A., and Fang, S. (1972). Human erythrocyte catalase: an improved method of isolation and a reevaluation of reported properties. Arch Biochem Biophys 150, 606-617 .10.1016/0003-9861(72)90080-X
[12] Bravo, J., Verdaguer, N., Tormo, J., Betzel, C., Switala, J., Loewen, P.C., and Fita, I. (1995). Crystal structure of catalase HPII from Escherichia coli. Structure 3, 491-502 .10.1016/S0969-2126(01)00182-4
[13] Brown-Peterson, N.J., and Salin, M.L. (1993). Purification of a catalase-peroxidase from Halobacterium halobium: characterization of some unique properties of the halophilic enzyme. J Bacteriol 175, 4197-4202 .
[14] Brown-Peterson, N.J., and Salin, M.L. (1995). Purification and characterization of a mesohalic catalase from the halophilic bacterium Halobacterium halobium. J Bacteriol 177, 378-384 .
[15] Busciglio, J., and Yankner, B.A. (1995). Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378, 776-779 .10.1038/378776a0
[16] Canepa, L., Ferraris, A.M., Miglino, M., and Gaetani, G.F. (1991). Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Biochim Biophys Acta 1074, 101-104 .
[17] Carpena, X., Soriano, M., Klotz, M.G., Duckworth, H.W., Donald, L.J., Melik-Adamyan, W., Fita, I., and Loewen, P.C. (2003). Structure of the Clade 1 catalase, CatF of Pseudomonas syringae, at 1.8 A resolution. Proteins 50, 423-436 .10.1002/prot.10284
[18] Chelikani, P., Carpena, X., Fita, I., and Loewen, P.C. (2003). An electrical potential in the access channel of catalases enhances catalysis. J Biol Chem 278, 31290-31296 .10.1074/jbc.M304076200
[19] Claiborne, A., Malinowski, D.P., and Fridovich, I. (1979). Purification and characterization of hydroperoxidase II of Escherichia coli B. J Biol Chem 254, 11664-11668 .
[20] Deisseroth, A., and Dounce, A.L. (1970). Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 50, 319-375 .
[21] Díaz, A., Horjales, E., Rudi?o-Pi?era, E., Arreola, R., and Hansberg, W. (2004). Unusual Cys-Tyr covalent bond in a large catalase. J Mol Biol 342, 971-985 .10.1016/j.jmb.2004.07.027
[22] Fita, I., and Rossmann, M.G. (1985). The active center of catalase. J Mol Biol 185, 21-37 .10.1016/0022-2836(85)90180-9
[23] Fita, I., and Rossmann, M.G. (1985). The NADPH binding site on beef liver catalase. Proc Natl Acad Sci U S A 82, 1604-1608 .10.1073/pnas.82.6.1604
[24] Fita, I., Silva, A.M., Murthy, M.R.N., and Rossmann, M.G. (1986). The refined structure of beef liver catalase at 2.5 ? resolution. Acta Crystallogr 42, 497-515 .10.1107/S0108768186097835
[25] Fraaije, M.W., Roubroeks, H.P., Hagen, W.R., and Van Berkel, W.J.H. (1996). Purification and characterization of an intracellular catalase-peroxidase from Penicillium simplicissimum. Eur J Biochem 235, 192-198 .10.1111/j.1432-1033.1996.00192.x
[26] Friel, J.K., Martin, S.M., Langdon, M., Herzberg, G.R., and Buettner, G.R. (2002). Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr Res 51, 612-618 .10.1203/00006450-200205000-00012
[27] Gaetani, F., and Kirkman, H.N. (1983). [abstr.] Am J Hum Genet 35, 43.
[28] Gaetani, G.F., Galiano, S., Canepa, L., Ferraris, A.M., and Kirkman, H.N. (1989). Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood 73, 334-339 .
[29] Gaetani, G.F., Ferraris, A.M., Rolfo, M., Mangerini, R., Arena, S., and Kirkman, H.N. (1996). Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 87, 1595-1599 .
[30] Gaetani, G.F., Ferraris, A.M., Sanna, P., and Kirkman, H.N. (2005). A novel NADPH:(bound) NADP+ reductase and NADH:(bound) NADP+ transhydrogenase function in bovine liver catalase. Biochem J 385, 763-768 .10.1042/BJ20041495
[31] Ganschow, R.E., and Schimke, R.T. (1969). Independent genetic control of the catalytic activity and the rate of degradation of catalase in mice. J Biol Chem 244, 4649-4658 .
[32] Gibbons, N.C.J., Wood, J.M., Rokos, H., and Schallreuter, K.U. (2006). Computer simulation of native epidermal enzyme structures in the presence and absence of hydrogen peroxide (H2O2): potential and pitfalls. J Invest Dermatol 126, 2576-2582 .10.1038/sj.jid.5700612
[33] Góth, L. (2000). Lipid and carbohydrate metabolism in acatalasemia. Clin Chem 46, 564-566 .
[34] Góth, L., and Eaton, J.W. (2000). Hereditary catalase deficiencies and increased risk of diabetes. Lancet 356, 1820-1821 .10.1016/S0140-6736(00)03238-4
[35] Góth, L., Rass, P., and Páy, A. (2004). Catalase enzyme mutations and their association with diseases. Mol Diagn 8, 141-149 .10.2165/00066982-200408030-00001
[36] Góth, L., and Vitai, M. (1996). Hypocatalasemia in hospital patients. Clin Chem 42, 341-342 .
[37] Gouet, P., Jouve, H.M., and Dideberg, O. (1995). Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. J Mol Biol 249, 933-954 .10.1006/jmbi.1995.0350
[38] Gouet, P., Jouve, H.M., Williams, P.A., Andersson, I., Andreoletti, P., Nussaume, L., and Hajdu, J. (1996). Ferryl intermediates of catalase captured by time-resolved Weissenberg crystallography and UV-VIS spectroscopy. Nat Struct Biol 3, 951-956 .10.1038/nsb1196-951
[39] Halliwell, B., and Gutteridge, J.M.C. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219, 1-14 .
[40] Heck, D.E., Vetrano, A.M., Mariano, T.M., and Laskin, J.D. (2003). UVB light stimulates production of reactive oxygen species: unexpected role for catalase. J Biol Chem 278, 22432-22436 .10.1074/jbc.C300048200
[41] Ho, Y.S., Xiong, Y., Ma, W., Spector, A., and Ho, D.S. (2004). Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 279, 32804-32812 .10.1074/jbc.M404800200
[42] Hochman, A., and Shemesh, A. (1987). Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. J Biol Chem 262, 6871-6876 .
[43] Hoffschir, F., Daya-Grosjean, L., Petit, P.X., Nocentini, S., Dutrillaux, B., Sarasin, A., and Vuillaume, M. (1998). Low catalase activity in xeroderma pigmentosum fibroblasts and SV40-transformed human cell lines is directly related to decreased intracellular levels of the cofactor, NADPH. Free Radic Biol Med 24, 809-816 .10.1016/S0891-5849(97)00350-X
[44] Hunt, W.A. (1996). Role of acetaldehyde in the actions of ethanol on the brain—a review. Alcohol 13, 147-151 .10.1016/0741-8329(95)02026-8
[45] Islam, K.N., Kayanoki, Y., Kaneto, H., Suzuki, K., Asahi, M., Fujii, J., and Taniguchi, N. (1997). TGF-beta1 triggers oxidative modifications and enhances apoptosis in HIT cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radic Biol Med 22, 1007-1017 .10.1016/S0891-5849(96)00493-5
[46] Ivancich, A., Jouve, H.M., and Gaillard, J. (1996). EPR evidence for a tyrosyl radical intermediate in bovine liver catalase. J Am Chem Soc 118, 12852-12853 .10.1021/ja9628361
[47] Williams, R.N., Delamere, N.A., and Paterson, C.A. (1985). Inactivation of catalase with 3-amino-1,2,4-triazole: an indirect irreversible mechanism. Biochem Pharmacol 34, 3386-3389 .10.1016/0006-2952(85)90364-8
[48] Johnson, R.M., Ho, Y.S., Yu, D.Y., Kuypers, F.A., Ravindranath, Y., and Goyette, G.W. (2010). The effects of disruption of genes for peroxiredoxin-2, glutathione peroxidase-1, and catalase on erythrocyte oxidative metabolism. Free Radic Biol Med 48, 519-525 .10.1016/j.freeradbiomed.2009.11.021
[49] Jouve, H.M., Pelmont, J., and Gaillard, J. (1986). Interaction between pyridine adenine dinucleotides and bovine liver catalase: a chromatographic and spectral study. Arch Biochem Biophys 248, 71-79 .10.1016/0003-9861(86)90402-9
[50] Kang, Y.J., Chen, Y., and Epstein, P.N. (1996). Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J Biol Chem 271, 12610-12616 .10.1074/jbc.271.21.12610
[51] kani, P.C., Fita, I., Loewen, P.C. (2004). Diversity of structures and properties among catalases. Cell Mol Life Sci 61, 192-208 .
[52] Kim, H., Lee, J.S., Hah, Y.C., and Roe, J.H. (1994). Characterization of the major catalase from Streptomyces coelicolor ATCC 10147. Microbiology 140, 3391-3397 .10.1099/13500872-140-12-3391
[53] Kirkman, H.N. (1982). [abstr.] Fed. Proc. Fed. Am. Soc. Exp. Biol . 41, 1398.
[54] Kirkman, H.N., and Gaetani, G.F. (1984). Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci U S A 81, 4343-4347 .10.1073/pnas.81.14.4343
[55] Kirkman, H.N., and Gaetani, G.F. (2007). Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci 32, 44-50 .10.1016/j.tibs.2006.11.003
[56] Kirkman, H.N., Gaetani, G.F., and Clemons, E.H. (1986). NADP-binding proteins causing reduced availability and sigmoid release of NADP+ in human erythrocytes. J Biol Chem 261, 4039-4045 .
[57] Kirkman, H.N., Galiano, S., and Gaetani, G.F. (1987). The function of catalase-bound NADPH. J Biol Chem 262, 660-666 .
[58] Kirkman, H.N., Rolfo, M., Ferraris, A.M., and Gaetani, G.F. (1999). Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem 274, 13908-13914 .10.1074/jbc.274.20.13908
[59] Kirkman, H.N., Wilson, W.G., and Clemons, E.H. (1980). Regulation of glucose-6-phosphate dehydrogenase I. Intact red cells. J Lab Clin Med 95, 877-887 .
[60] Kitlar, T., D?ring, F., Diedrich, D.F., Frank, R., Wallmeier, H., Kinne, R.K., and Deutscher, J. (1994). Interaction of phlorizin, a potent inhibitor of the Na+/D-glucose cotransporter, with the NADPH-binding site of mammalian catalases. Protein Sci 3, 696-700 .10.1002/pro.5560030417
[61] Ko, T.P., Safo, M.K., Musayev, F.N., Di Salvo, M.L., Wang, C., Wu, S.H., and Abraham, D.J. (2000). Structure of human erythrocyte catalase. Acta Crystallogr D Biol Crystallogr 56, 241-245 .10.1107/S0907444999015930
[62] Lapointe, S., Sullivan, R., and Sirard, M.A. (1998). Binding of a bovine oviductal fluid catalase to mammalian spermatozoa. Biol Reprod 58, 747-753 .10.1095/biolreprod58.3.747
[63] Malkin, A.J., Kuznetsov YuG, Land, T.A., DeYoreo, J.J., and McPherson, A. (1995). Mechanisms of growth for protein and virus crystals. Nat Struct Biol 2, 956-959 .10.1038/nsb1195-956
[64] Mann, H., McCoy, M.T., Subramaniam, J., Van Remmen, H., and Cadet, J.L. (1997). Overexpression of superoxide dismutase and catalase in immortalized neural cells: toxic effects of hydrogen peroxide. Brain Res 770, 163-168 .10.1016/S0006-8993(97)00768-3
[65] Margoliash, E., Novogrodsky, A., and Schejter, A. (1960). Irreversible reaction of 3-amino-1∶2∶4-triazole and related inhibitors with the protein of catalase. Biochem J 74, 339-348 .
[66] Marcinkeviciene, J.A., Magliozzo, R.S., and Blanchard, J.S. (1995). Purification and characterization of the Mycobacterium smegmatis catalase-peroxidase involved in isoniazid activation. J Biol Chem 270, 22290-22295 .10.1074/jbc.270.38.22290
[67] Hamby-Mason, R., Chen, J.J., Schenker, S., Perez, A., and Henderson, G.I. (1997). Catalase mediates acetaldehyde formation from ethanol in fetal and neonatal rat brain. Alcohol Clin Exp Res 21, 1063-1072 .
[68] Maté, M.J., Zamocky, M., Nykyri, L.M., Herzog, C., Alzari, P.M., Betzel, C., Koller, F., and Fita, I. (1999). Structure of catalase-A from Saccharomyces cerevisiae. J Mol Biol 286, 135-149 .10.1006/jmbi.1998.2453
[69] Matthews, B.W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491-497 .10.1016/0022-2836(68)90205-2
[70] Miyamoto, T., Hayashi, M., Takeuchi, A., Okamoto, T., Kawashima, S., Takii, T., Hayashi, H., and Onozaki, K. (1996). Identification of a novel growth-promoting factor with a wide target cell spectrum from various tumor cells as catalase. J Biochem 120, 725-730 .
[71] Mueller, S., Riedel, H.D., and Stremmel, W. (1997). Direct evidence for catalase as the predominant H2O2 -removing enzyme in human erythrocytes. Blood 90, 4973-4978 .
[72] Muppala, V.K., Lin, C.S., and Lee, Y.H. (2000). The role of HNF-1alpha in controlling hepatic catalase activity. Mol Pharmacol 57, 93-100 .
[73] Murshudov, G.N., Melik-Adamyan, W.R., Grebenko, A.I., Barynin, V.V., Vagin, A.A., Vainshtein, B.K., Dauter, Z., and Wilson, K.S. (1992). Three-dimensional structure of catalase from Micrococcus lysodeikticus at 1.5 A resolution. FEBS Lett 312, 127-131 .10.1016/0014-5793(92)80919-8
[74] Nadler, V., Goldberg, I., and Hochman, A. (1986). Comparative study of bacterial catalase. Biochim Biophys Acta 882, 234-241 .
[75] Nicholls, P., Fita, I., and Loewen, P.C. (2001). Enzymology and structure of catalases. Adv Inorg Chem 51, 51-106 .10.1016/S0898-8838(00)51001-0
[76] O’Malley, Y.Q., Reszka, K.J., Rasmussen, G.T., Abdalla, M.Y., Denning, G.M., and Britigan, B.E. (2003). The Pseudomonas secretory product pyocyanin inhibits catalase activity in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 285, L1077-L1086 .
[77] Ogata, M. (1991). Acatalasemia. Hum Genet 86, 331-340 .10.1007/BF00201829
[78] Oktyabrsky, O.N., and Smirnova G.V. (2007). Redox regulations of cellular functions. Biochemistry (Moscow) 72 , 2, 132-145 .
[79] Olson, L.P., and Bruice, T.C. (1995). Electron tunneling and ab initio calculations related to the one-electron oxidation of NAD(P)H bound to catalase. Biochemistry 34, 7335-7347 .10.1021/bi00022a006
[80] Peter, C.L., Martin, G.K., and Daniel, J.H. (2000). Catalase–an “old” enzyme that continues to surprise us. ASM News 66, 76-82 .
[81] Prakash, K., Prajapati, S., Ahmad, A., Jain, S.K., and Bhakuni, V. (2002). Unique oligomeric intermediates of bovine liver catalase. Protein Sci 11, 46-57 .10.1110/ps.ps.20102
[82] Purdue, P.E., and Lazarow, P.B. (1996). Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J Cell Biol 134, 849-862 .10.1083/jcb.134.4.849
[83] Putnam, C.D., Arvai, A.S., Bourne, Y., and Tainer, J.A. (2000). Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol 296, 295-309 .10.1006/jmbi.1999.3458
[84] Quilliet, X., Chevallier-Lagente, O., Zeng, L., Calvayrac, R., Mezzina, M., Sarasin, A., and Vuillaume, M. (1997). Retroviral-mediated correction of DNA repair defect in xeroderma pigmentosum cells is associated with recovery of catalase activity. Mutat Res 385, 235-242 .
[85] Iozzo, R.V., MacDonald, G.H., and Wight, T.N. (1982). Immunoelectron microscopic localization of catalase in human eosinophilic leukocytes. J Histochem Cytochem 30, 697-701 .
[86] Rocha, E.R., Selby, T., Coleman, J.P., and Smith, C.J. (1996). Oxidative stress response in an anaerobe, Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide. J Bacteriol 178, 6895-6903 .
[87] Rovira, C. (2005). Structure, protonation state and dynamics of catalase compound II. Chemphyschem 6, 1820-1826 .10.1002/cphc.200400633
[88] Safo, M.K., Musayev, F.N., Wu, S.H., Abraham, D.J., and Ko, T.P. (2001). Structure of tetragonal crystals of human erythrocyte catalase. Acta Crystallogr D Biol Crystallogr 57, 1-7 .10.1107/S0907444900013767
[89] Sancho, P., Troyano, A., Fernández, C., De Blas, E., and Aller, P. (2003). Differential effects of catalase on apoptosis induction in human promonocytic cells. Relationships with heat-shock protein expression. Mol Pharmacol 63, 581-589 .10.1124/mol.63.3.581
[90] Sandstrom, P.A., and Buttke, T.M. (1993). Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium. Proc Natl Acad Sci U S A 90, 4708-4712 .10.1073/pnas.90.10.4708
[91] Sato, A., Furuno, T., Toyoshima, C., and Sasabe, H. (1993). Two-dimensional crystallization of catalase on a monolayer film of poly(1-benzyl-L-histidine) spread at the air/water interface. Biochim Biophys Acta 1162, 54-60 .
[92] Schonbaum, G.R., and Chance, B. (1976). In the enzymes, Boyer, P.D. ed. (Academic, New York), pp.368-408 .
[93] Sevinc, M.S., Maté, M.J., Switala, J., Fita, I., and Loewen, P.C. (1999). Role of the lateral channel in catalase HPII of Escherichia coli. Protein Sci 8, 490-498 .10.1110/ps.8.3.490
[94] Sharma, K.D., Andersson, L.A., Loehr, T.M., Terner, J., and Goff, H.M. (1989). Comparative spectral analysis of mammalian, fungal, and bacterial catalases. Resonance Raman evidence for iron-tyrosinate coordination. J Biol Chem 264, 12772-12779 .
[95] Shingu, M., Yoshioka, K., Nobunaga, M., and Yoshida, K. (1985). Human vascular smooth muscle cells and endothelial cells lack catalase activity and are susceptible to hydrogen peroxide. Inflammation 9, 309-320 .10.1007/BF00916279
[96] Sigfrid, L.A., Cunningham, J.M., Beeharry, N., Lortz, S., Tiedge, M., Lenzen, S., Carlsson, C., and Green, I.C. (2003). Cytokines and nitric oxide inhibit the enzyme activity of catalase but not its protein or mRNA expression in insulin-producing cells. J Mol Endocrinol 31, 509-518 .10.1677/jme.0.0310509
[97] Takeuchi, A., Miyamoto, T., Yamaji, K., Masuho, Y., Hayashi, M., Hayashi, H., and Onozaki, K. (1995). A human erythrocyte-derived growth-promoting factor with a wide target cell spectrum: identification as catalase. Cancer Res 55, 1586-1589 .
[98] Terzenbach, D.P., and Blaut, M. (1998). Purification and characterization of a catalase from the nonsulfur phototrophic bacterium Rhodobacter sphaeroides ATH 2.4.1 and its role in the oxidative stress response. Arch Microbiol 169, 503-508 .10.1007/s002030050603
[99] Tiedge, M., Lortz, S., Drinkgern, J., and Lenzen, S. (1997). Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46, 1733-1742 .10.2337/diabetes.46.11.1733
[100] Tiedge, M., Lortz, S., Munday, R., and Lenzen, S. (1998). Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes 47, 1578-1585 .10.2337/diabetes.47.10.1578
[101] Vainshtein, B.K., Melik-Adamyan, W.R., Barynin, V.V., Vagin, A.A., Grebenko, A.I., Borisov, V.V., Bartels, K.S., Fita, I., and Rossmann, M.G. (1986). Three-dimensional structure of catalase from Penicillium vitale at 2.0 A resolution. J Mol Biol 188, 49-61 .10.1016/0022-2836(86)90479-1
[102] Vetrano, A.M., Heck, D.E., Mariano, T.M., Mishin, V., Laskin, D.L., and Laskin, J.D. (2005). Characterization of the oxidase activity in mammalian catalase. J Biol Chem 280, 35372-35381 .10.1074/jbc.M503991200
[103] Vuillaume, M. (1987). Reduced oxygen species, mutation, induction and cancer initiation. Mutat Res 186, 43-72 .
[104] Wood, J.M., Gibbons, N.C.J., Chavan, B., and Schallreuter, K.U. (2008). Computer simulation of heterogeneous single nucleotide polymorphisms in the catalase gene indicates structural changes in the enzyme active site, NADPH-binding and tetramerization domains: a genetic predisposition for an altered catalase in patients with vitiligo? Exp Dermatol 17, 366-371 .10.1111/j.1600-0625.2008.00699.x
[105] Yabuki, M., Kariya, S., Ishisaka, R., Yasuda, T., Yoshioka, T., Horton, A.A., and Utsumi, K. (1999). Resistance to nitric oxide-mediated apoptosis in HL-60 variant cells is associated with increased activities of Cu,Zn-superoxide dismutase and catalase. Free Radic Biol Med 26, 325-332 .10.1016/S0891-5849(98)00203-2
[106] Young, I.S., and Woodside, J.V. (2001). Antioxidants in health and disease. J Clin Pathol 54, 176-186 .10.1136/jcp.54.3.176
[107] Yumoto, I., Fukumori, Y., and Yamanaka, T. (1990). Purification and characterization of catalase from a facultative alkalophilic Bacillus. J Biochem 108, 583-587 .
[108] Zimatkin, S.M., Liopo, A.V., and Deitrich, R.A. (1998). Distribution and kinetics of ethanol metabolism in rat brain. Alcohol Clin Exp Res 22, 1623-1627 .
[109] Zamocky, M., Furtmüller, P.G., and Obinger, C. (2008). Evolution of catalases from bacteria to humans. Antioxid Redox Signal 10, 1527-1548 .10.1089/ars.2008.2046
AI Summary AI Mindmap
PDF(375 KB)

Accesses

Citations

Detail

Sections
Recommended

/