Melanization in living organisms: a perspective of species evolution

Christopher J Vavricka1(), Bruce M. Christensen2, Jianyong Li3

PDF(253 KB)
PDF(253 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (9) : 830-841. DOI: 10.1007/s13238-010-0109-8
REVIEW

Melanization in living organisms: a perspective of species evolution

  • Christopher J Vavricka1(), Bruce M. Christensen2, Jianyong Li3
Author information +
History +

Abstract

Eumelanin is a heteropolymer that is generally composed of hydroxylated indole residues and plays diverse protective functions in various species. Melanin is derived from the amino acid tyrosine and production of melanin is a highly complex oxidative process with a number of steps that can either proceed enzymatically or non-enzymatically. Although melanin plays important protective roles in many species, during melanization, particularly in steps that can proceed non-enzymatically, many toxic intermediates are produced, including semiquinones, dopaquinone, indole-quinones and moreover, the production of many reactive oxygen species. To mitigate the production of reactive species, a number of proteins that regulate the biochemical process of melanization have evolved in various living species, which is closely related to adaptation and physiological requirements. In this communication, we discuss differences between non-enzymatic and enzymatic processes of melanization and the enzymatic regulation of melanization in difference species with an emphasis on differences between mammals and insects. Comparison between melanization and insect sclerotization is also emphasized which raises some interesting questions about the current models of these pathways.

Keywords

melanization / melanogenesis / sclerotization / tanning / dopa / tyrosinase / dopachrome (CDC) tautomerase

Cite this article

Download citation ▾
Christopher J Vavricka, Bruce M. Christensen, Jianyong Li. Melanization in living organisms: a perspective of species evolution. Prot Cell, 2010, 1(9): 830‒841 https://doi.org/10.1007/s13238-010-0109-8

References

[1] Andersen, S.O. (2010). Insect cuticular sclerotization: a review. Insect Biochem Mol Biol 40, 166-178 .10.1016/j.ibmb.2009.10.007
[2] Aroca, P., Garcia-Borron, J.C., Solano, F., and Lozano, J.A. (1990). Regulation of mammalian melanogenesis. I: Partial purification and characterization of a dopachrome converting factor: dopachrome tautomerase. Biochim Biophys Acta 1035, 266-275 .
[3] Aroca, P., Solano, F., Garcia-Borrón, J.C., and Lozano, J.A. (1991). Specificity of dopachrome tautomerase and inhibition by carboxylated indoles. Considerations on the enzyme active site. Biochem J 277, 393-397 .
[4] Aso, Y., Kramer, K.J., Hopkins, T.L., and Whetzel, S.Z. (1984). Properties of tyrosinase and dopa quinone imine conversion factor from pharate pupal cuticle ofManduca sexta L. Insect Biochem 14, 463-472 .10.1016/0020-1790(84)90103-3
[5] Barber, J.I., Townsend, D., Olds, D.P., and King, R.A. (1984). Dopachrome oxidoreductase: a new enzyme in the pigment pathway. J Invest Dermatol 83, 145-149 .10.1111/1523-1747.ep12263381
[6] Cánovas, F.G., García-Carmona, F., Sánchez, J.V., Pastor, J.L., and Teruel, J.A. (1982). The role of pH in the melanin biosynthesis pathway. J Biol Chem 257, 8738-8744 .
[7] Cardinali, G., Bolasco, G., Aspite, N., Lucania, G., Lotti, L.V., Torrisi, M.R., and Picardo, M. (2008). Melanosome transfer promoted by keratinocyte growth factor in light and dark skin-derived keratinocytes. J Invest Dermatol 128, 558-567 .
[8] Cheli, Y., Ohanna, M., Ballotti, R., and Bertolotto, C. (2009). Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res 23, 27-40 .10.1111/j.1755-148X.2009.00653.x
[9] Drapeau, M.D. (2001). The Family of Yellow-Related Drosophila melanogaster Proteins. Biochem Biophys Res Commun 281, 611-613 .10.1006/bbrc.2001.4391
[10] Han, Q., Fang, J., Ding, H., Johnson, J.K., Christensen, B.M., and Li, J. (2002). Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochem J 368, 333-340 .10.1042/BJ20020272
[11] Hearing, V.J. (1999). Biochemical control of melanogenesis and melanosomal organization. J Investig Dermatol Symp Proc 4, 24-28 .10.1038/sj.jidsp.5640176
[12] Hearing, V.J., Korner, A.M., and Pawelek, J.M. (1982). New regulators of melanogenesis are associated with purified tyrosinase isozymes. J Invest Dermatol 79, 16-18 .10.1111/1523-1747.ep12510422
[13] Hernández-Romero, D., Sanchez-Amat, A., and Solano, F. (2006). A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio. FEBS J 273, 257-270 .10.1111/j.1742-4658.2005.05038.x
[14] Hopkins, T.L., Morgan, T.D., Aso, Y., and Kramer, K.J. (1982). N-beta-Alanyldopamine: Major Role in Insect Cuticle Tanning. Science 217, 364-366 .10.1126/science.217.4557.364
[15] Jackson, I.J., Chambers, D.M., Tsukamoto, K., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., and Hearing, V. (1992). A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J 11, 527-535 .
[16] Jara, J.R., Solano, F., and Lozano, J.A. (1988). Assays for mammalian tyrosinase: a comparative study. Pigment Cell Res 1, 332-339 .10.1111/j.1600-0749.1988.tb00128.x
[17] Jiang, S., Liu, X.M., Dai, X., Zhou, Q., Lei, T.C., Beermann, F., Wakamatsu, K., and Xu, S.Z. (2010). Regulation of DHICA-mediated antioxidation by dopachrome tautomerase: implication for skin photoprotection against UVA radiation. Free Radic Biol Med 48, 1144-1151 .10.1016/j.freeradbiomed.2010.01.033
[18] Johnson, J.K., Li, J., and Christensen, B.M. (2001). Cloning and characterization of a dopachrome conversion enzyme from the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 31, 1125-1135 .10.1016/S0965-1748(01)00072-8
[19] Karlson, P., and Sekeris, C.E. (1962). N acetyl-dopamine as sclerotizing agent of the insect cuticle. Nature 195, 183-184 .10.1038/195183a0
[20] Kim, S.R., Yao, R., Han, Q., Christensen, B.M., and Li, J. (2005). Identification and molecular characterization of a prophenoloxidase involved in Aedes aegypti chorion melanization. Insect Mol Biol 14, 185-194 .10.1111/j.1365-2583.2004.00547.x
[21] Korner, A.M., and Gettins, P. (1985). Synthesis in vitro of 5,6-dihydroxyindole-2-carboxylic acid by dopachrome conversion factor from Cloudman S91 melanoma cells. J Invest Dermatol 85, 229-231 .10.1111/1523-1747.ep12276688
[22] K?rner, A.M., and Pawelek, J. (1980). Dopachrome conversion: a possible control point in melanin biosynthesis. J Invest Dermatol 75, 192-195 .10.1111/1523-1747.ep12522650
[23] Lamoreux, M.L., Woolley, C., and Pendergast, P. (1986). Genetic controls over activities of tyrosinase and dopachrome conversion factor in murine melanocytes. Genetics 113, 967-984 .
[24] Leonard, L.J., Townsend, D., and King, R.A. (1988). Dopachrome conversion in the eumelanin pathway—product and control. Pigment Cell Res 1, 289-289 .
[25] Li, J., Zhao, X., and Christensen, B.M. (1994). Dopachrome conversion activity in Aedes aegypti: significance during melanotic encapsulation of parasites and cuticular tanning. Insect Biochem Mol Biol 24, 1043-1049 .10.1016/0965-1748(94)90142-2
[26] Li, J.S., Ruyl Kim, S., Christensen, B.M., and Li, J. (2005). Purification and primary structural characterization of prophenoloxidases from Aedes aegypti larvae. Insect Biochem Mol Biol 35, 1269-1283 .10.1016/j.ibmb.2005.07.001
[27] Li, J.S., Vavricka, C.J., Christensen, B.M., and Li, J. (2007). Proteomic analysis of N-glycosylation in mosquito dopachrome conversion enzyme. Proteomics 7, 2557-2569 .10.1002/pmic.200601053
[28] Li, J.Y., and Christensen, B.M. (1994). Effect of pH on the oxidation pathway of dopamine and dopa. J Electroanal Chem 375, 219-231 .10.1016/0022-0728(94)03389-7
[29] Li, J.Y., Zhang, F.J., and Christensen, B.M. (1996). Involvement of lactones in the formation of 6-hydroxydopa and 6-hydroxyhydrocaffeic acid during oxidation of dopa and hydrocaffeic acid. J Electroanal Chem 412, 19-29 .10.1016/0022-0728(96)04602-5
[30] Marles, L.K., Peters, E.M., Tobin, D.J., Hibberts, N.A., and Schallreuter, K.U. (2003). Tyrosine hydroxylase isoenzyme I is present in human melanosomes: a possible novel function in pigmentation. Exp Dermatol 12, 61-70 .10.1034/j.1600-0625.2003.120108.x
[31] Matoba, Y., Kumagai, T., Yamamoto, A., Yoshitsu, H., and Sugiyama, M. (2006). Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem 281, 8981-8990 .10.1074/jbc.M509785200
[32] Michard, Q., Commo, S., Belaidi, J.P., Alleaume, A.M., Michelet, J.F., Daronnat, E., Eilstein, J., Duche, D., Marrot, L., and Bernard, B.A. (2008a). TRP-2 specifically decreases WM35 cell sensitivity to oxidative stress. Free Radic Biol Med 44, 1023-1031 .10.1016/j.freeradbiomed.2007.11.021
[33] Michard, Q., Commo, S., Rocchetti, J., El Houari, F., Alleaume, A.M., Wakamatsu, K., Ito, S., and Bernard, B.A. (2008b). TRP-2 expression protects HEK cells from dopamine- and hydroquinone-induced toxicity. Free Radic Biol Med 45, 1002-1010 .
[34] Nappi, A.J., and Vass, E. (1993). Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Res 6, 117-126 .10.1111/j.1600-0749.1993.tb00590.x
[35] Nappi, A.J., Vass, E., Frey, F., and Carton, Y. (1995). Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur J Cell Biol 68, 450-456 .
[36] Olivares, C., Jiménez-Cervantes, C., Lozano, J.A., Solano, F., and García-Borrón, J.C. (2001). The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase. Biochem J 354, 131-139 .10.1042/0264-6021:3540131
[37] Pak, B.J., Lee, J., Thai, B.L., Fuchs, S.Y., Shaked, Y., Ronai, Z., Kerbel, R.S., and Ben-David, Y. (2004). Radiation resistance of human melanoma analysed by retroviral insertional mutagenesis reveals a possible role for dopachrome tautomerase. Oncogene 23, 30-38 .10.1038/sj.onc.1207007
[38] Palumbo, A., d’Ischia, M., Misuraca, G., and Prota, G. (1987). Effect of metal ions on the rearrangement of dopachrome. Biochim Biophys Acta 925, 203-209 .
[39] Palumbo, A., Solano, F., Misuraca, G., Aroca, P., Garcia Borron, J.C., Lozano, J.A., and Prota, G. (1991a). Comparative action of dopachrome tautomerase and metal ions on the rearrangement of dopachrome. Biochim Biophys Acta 1115, 1-5 .
[40] Palumbo, A., Solano, F., Misuraca, G., Aroca, P., Garcia Borron, J.C., Lozano, J.A., and Prota, G. (1991b). Comparative action of dopachrome tautomerase and metal ions on the rearrangement of dopachrome. Biochim Biophys Acta 1115, 1-5 .
[41] Pawelek, J.M. (1990). Dopachrome conversion factor functions as an isomerase. Biochem Biophys Res Commun 166, 1328-1333 .10.1016/0006-291X(90)91011-G
[42] Pawelek, J.M., and Lerner, A.B. (1978). 5,6-Dihydroxyindole is a melanin precursor showing potent cytotoxicity. Nature 276, 626-628 .10.1038/276627a0
[43] Powell, B.J. (2005). 5,6-Dihydroxyindole-2-carboxylic acid: a first principles density functional study. Chem Phys Lett 402, 111-115 .10.1016/j.cplett.2004.12.010
[44] Prota, G. (1992). Melanins and melanogenesis (San Diego, Academic Press).
[45] Townsend, D., Oetting, W.S., Polman, T., and King, R.A. (1992). Purification and Characterization of Dopachrome-Tautomerase (Dt). Pigment Cell Research , 32-35 .
[46] Vavricka, C.J., Ray, K.W., Christensen, B.M., and Li, J. (2010). Purification and N-glycosylation analysis of melanoma antigen dopachrome tautomerase. Protein J 29, 204-212 .10.1007/s10930-010-9241-9
[47] Wang, R.F., Appella, E., Kawakami, Y., Kang, X., and Rosenberg, S.A. (1996). Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 184, 2207-2216 .10.1084/jem.184.6.2207
AI Summary AI Mindmap
PDF(253 KB)

Accesses

Citations

Detail

Sections
Recommended

/