Candidate Mycobacterium tuberculosis genes targeted by human microRNAs

WeiRui Guo1, Jiong-Tang Li2, Xiao Pan1, Liping Wei2(), Jane Y. Wu3()

PDF(65 KB)
PDF(65 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (5) : 419-421. DOI: 10.1007/s13238-010-0056-4
PERSPECTIVE
PERSPECTIVE

Candidate Mycobacterium tuberculosis genes targeted by human microRNAs

  • WeiRui Guo1, Jiong-Tang Li2, Xiao Pan1, Liping Wei2(), Jane Y. Wu3()
Author information +
History +

Cite this article

Download citation ▾
WeiRui Guo, Jiong-Tang Li, Xiao Pan, Liping Wei, Jane Y. Wu. Candidate Mycobacterium tuberculosis genes targeted by human microRNAs. Prot Cell, 2010, 1(5): 419‒421 https://doi.org/10.1007/s13238-010-0056-4

References

[1] Akaki, T., Tomioka, H., Shimizu, T., Dekio, S., and Sato, K. (2000). Comparative roles of free fatty acids with reactive nitrogen intermediates and reactive oxygen intermediates in expression of the anti-microbial activity of macrophages against Mycobacterium tuberculosis. Clin Exp Immunol 121, 302-310 .10.1046/j.1365-2249.2000.01298.x
[2] Dieli, F., Troye-Blomberg, M., Ivanyi, J., Fournie, J.J., Krensky, A.M., Bonneville, M., Peyrat, M.A., Caccamo, N., Sireci, G., and Salerno, A. (2001). Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T lymphocytes. J Infect Dis 184, 1082-1085 .10.1086/323600
[3] Dunoyer, P., Himber, C., Ruiz-Ferrer, V., Alioua, A., and Voinnet, O. (2007). Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nat Genet 39, 848-856 .10.1038/ng2081
[4] Finlay, B.B., and Falkow, S. (1997). Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61, 136-169 .
[5] Fischer, S., Gerriets, T., Wessels, C., Walberer, M., Kostin, S., Stolz, E., Zheleva, K., Hocke, A., Hippenstiel, S., and Preissner, K.T. (2007). Extracellular RNA mediates endothelial-cell permeability via vascular endothelial growth factor. Blood 110, 2457-2465 .10.1182/blood-2006-08-040691
[6] Gottesman, S. (2005). Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 21, 399-404 .10.1016/j.tig.2005.05.008
[7] Gottwein, E., Mukherjee, N., Sachse, C., Frenzel, C., Majoros, W.H., Chi, J.T., Braich, R., Manoharan, M., Soutschek, J., Ohler, U., . (2007). A viral microRNA functions as an orthologue of cellular miR-155. Nature 450, 1096-1099 .10.1038/nature05992
[8] Houben, E.N., Nguyen, L., and Pieters, J. (2006). Interaction of pathogenic mycobacteria with the host immune system. Curr Opin Microbiol 9, 76-85 .10.1016/j.mib.2005.12.014
[9] John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S. (2004). Human MicroRNA targets. PLoS Biol 2, e363.10.1371/journal.pbio.0020363
[10] Kolattukudy, P.E., Fernandes, N.D., Azad, A.K., Fitzmaurice, A.M., and Sirakova, T.D. (1997). Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol 24, 263-270 .10.1046/j.1365-2958.1997.3361705.x
[11] Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., . (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401-1414 .10.1016/j.cell.2007.04.040
[12] Lecellier, C.H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., Saib, A., and Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science 308, 557-560 .10.1126/science.1108784
[13] Manganelli, R., Provvedi, R., Rodrigue, S., Beaucher, J., Gaudreau, L., and Smith, I. (2004). Sigma factors and global gene regulation in Mycobacterium tuberculosis. J Bacteriol 186, 895-902 .10.1128/JB.186.4.895-902.2004
[14] Marchler-Bauer, A., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M., . (2009). CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37, D205-210 .10.1093/nar/gkn845
[15] McDonough, K.A., Kress, Y., and Bloom, B.R. (1993). Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 61, 2763-2773 .
[16] Pelicic, V., Reyrat, J.M., and Gicquel, B. (1998). Genetic advances for studying Mycobacterium tuberculosis pathogenicity. Mol Microbiol 28, 413-420 .10.1046/j.1365-2958.1998.00807.x
[17] Sauter, C., Basquin, J., and Suck, D. (2003). Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli. Nucleic Acids Res 31, 4091-4098 .10.1093/nar/gkg480
[18] Smith, I. (2003). Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16, 463-496 .10.1128/CMR.16.3.463-496.2003
[19] Sorek, R., Kunin, V., and Hugenholtz, P. (2008). CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6, 181-186 .10.1038/nrmicro1793
[20] Vance, V., and Vaucheret, H. (2001). RNA silencing in plants--defense and counterdefense. Science 292, 2277-2280 .10.1126/science.1061334
[21] Watanabe, Y., Kishi, A., Yachie, N., Kanai, A., and Tomita, M. (2007). Computational analysis of microRNA-mediated antiviral defense in humans. FEBS Lett 581, 4603-4610 .10.1016/j.febslet.2007.08.049
AI Summary AI Mindmap
PDF(65 KB)

Accesses

Citations

Detail

Sections
Recommended

/