Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis

Yushan Zhu1,2(), Lixia Zhao1, Lei Liu1, Ping Gao1, Weili Tian2, Xiaohui Wang1, Haijing Jin1, Haidong Xu1, Quan Chen1,2()

PDF(892 KB)
PDF(892 KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (5) : 468-477. DOI: 10.1007/s13238-010-0048-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis

  • Yushan Zhu1,2(), Lixia Zhao1, Lei Liu1, Ping Gao1, Weili Tian2, Xiaohui Wang1, Haijing Jin1, Haidong Xu1, Quan Chen1,2()
Author information +
History +

Abstract

Autophagy and apoptosis are both highly regulated biological processes that play essential roles in tissue homeostasis, development and diseases. Autophagy is also described as a mechanism of death pathways, however, the precise mechanism of how autophagy links to cell death remains to be fully understood. Beclin 1 is a dual regulator for both autophagy and apoptosis. In this study we found that Beclin 1 was a substrate of caspase-3 with two cleavage sites at positions 124 and 149, respectively. Furthermore, the autophagosome formation occurred, followed by the appearance of morphological hallmarks of apoptosis after staurosporine treatment. The cleavage products of Beclin 1 reduced autophagy and promoted apoptosis in HeLa cells and the cells in which Beclin 1 was stably knocked down by specific shRNA. In addition, the cleavage of Beclin 1 resulted in abrogating the interaction between Bcl-2 with Beclin 1, which could be blocked by z-VAD-fmk. Thus, our results suggest that the cleavage of Beclin 1 by caspase-3 may contribute to inactivate autophagy leading towards augmented apoptosis.

Keywords

beclin 1 / autophagy / apoptosis / caspase cleavage

Cite this article

Download citation ▾
Yushan Zhu, Lixia Zhao, Lei Liu, Ping Gao, Weili Tian, Xiaohui Wang, Haijing Jin, Haidong Xu, Quan Chen. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Prot Cell, 2010, 1(5): 468‒477 https://doi.org/10.1007/s13238-010-0048-4

References

[1] Cho, D.H., Jo, Y.K., Hwang, J.J., Lee, Y.M., Roh, S.A., and Kim, J.C. (2009). Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett 274, 95–100 .10.1016/j.canlet.2008.09.004
[2] Codogno, P., and Meijer, A.J. (2005). Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12, 1509–1518 .10.1038/sj.cdd.4401751
[3] Dadakhujaev, S., Jung, E.J., Noh, H.S., Hah, Y.S., Kim, C.J., and Kim, D.R. (2009). Interplay between autophagy and apoptosis in TrkA-induced cell death. Autophagy 5.
[4] Eisenberg-Lerner, A., Bialik, S., Simon, H.U., and Kimchi, A. (2009). Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16, 966–975 .10.1038/cdd.2009.33
[5] Feng, W., Huang, S., Wu, H., and Zhang, M. (2007). Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol 372, 223–235 .10.1016/j.jmb.2007.06.069
[6] Gozuacik, D., Bialik, S., Raveh, T., Mitou, G., Shohat, G., Sabanay, H., Mizushima, N., Yoshimori, T., and Kimchi, A. (2008). DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ 15, 1875–1886 .10.1038/cdd.2008.121
[7] Kroemer, G., and Jaattela, M. (2005). Lysosomes and autophagy in cell death control. Nat Rev Cancer 5, 886–897 .10.1038/nrc1738
[8] Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27–42 .10.1016/j.cell.2007.12.018
[9] Levine, B., and Kroemer, G. (2009). Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ 16, 1–2 .10.1038/cdd.2008.139
[10] Luo, S., and Rubinsztein, D.C. (2009). Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 17, 268–277 .10.1038/cdd.2009.121
[11] Maiuri, M.C., Criollo, A., Tasdemir, E., Vicencio, J.M., Tajeddine, N., Hickman, J.A., Geneste, O., and Kroemer, G. (2007a). BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3, 374–376 .
[12] Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., . (2007b). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26, 2527–2539 .10.1038/sj.emboj.7601689
[13] Maiuri, M.C., Zalckvar, E., Kimchi, A., and Kroemer, G. (2007c). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8, 741–752 .10.1038/nrm2239
[14] Oberstein, A., Jeffrey, P.D., and Shi, Y. (2007). Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem 282, 13123–13132 .10.1074/jbc.M700492200
[15] Orvedahl, A., and Levine, B. (2008). Autophagy and viral neurovirulence. Cell Microbiol 10, 1747–1756 .10.1111/j.1462-5822.2008.01175.x
[16] Pattingre, S., and Levine, B. (2006). Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res 66, 2885–2888 .10.1158/0008-5472.CAN-05-4412
[17] Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X.H., Mizushima, N., Packer, M., Schneider, M.D., and Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 .10.1016/j.cell.2005.07.002
[18] Pattingre, S., Bauvy, C., Carpentier, S., Levade, T., Levine, B., and Codogno, P. (2009). Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J Biol Chem 284, 2719–2728 .10.1074/jbc.M805920200
[19] Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C.B., and Tsujimoto, Y. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6, 1221–1228 .10.1038/ncb1192
[20] Wang, J. (2008). Beclin 1 bridges autophagy, apoptosis and differentiation. Autophagy 4, 947–948 .
[21] Wei, Y., Pattingre, S., Sinha, S., Bassik, M., and Levine, B. (2008a). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30, 678–688 .10.1016/j.molcel.2008.06.001
[22] Wei, Y., Sinha, S., and Levine, B. (2008b). Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4, 949–951 .
[23] Yorimitsu, T., and Klionsky, D.J. (2005). Autophagy: molecular machinery for self-eating. Cell Death Differ 12, 1542–1552 .10.1038/sj.cdd.4401765
[24] Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., Brunner, T., and Simon, H.U. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8, 1124–1132 .10.1038/ncb1482
[25] Zalckvar, E., Berissi, H., Mizrachy, L., Idelchuk, Y., Koren, I., Eisenstein, M., Sabanay, H., Pinkas-Kramarski, R., and Kimchi, A. (2009). DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10, 285–292 .10.1038/embor.2008.246
AI Summary AI Mindmap
PDF(892 KB)

Accesses

Citations

Detail

Sections
Recommended

/