New nsp8 isoform suggests mechanism for tuning viral RNA synthesis

Protein Cell ›› 2010, Vol. 1 ›› Issue (2) : 198 -204.

PDF (392KB)
Protein Cell ›› 2010, Vol. 1 ›› Issue (2) : 198 -204. DOI: 10.1007/s13238-010-0028-8
Research articles
Research articles

New nsp8 isoform suggests mechanism for tuning viral RNA synthesis

Author information +
History +
PDF (392KB)

Abstract

During severe acute respiratory syndrome coronavirus (SARS-CoV) infection, the activity of the replication/transcription complexes (RTC) quickly peaks at 6 hours post infection (h.p.i) and then diminishes significantly in the late post-infection stages. This “down-up-down” regulation of RNA synthesis distinguishes different viral stages: primary translation, genome replication, and finally viron assembly. Regarding the nsp8 as the primase in RNA synthesis, we confirmed that the proteolysis product of the primase (nsp8) contains the globular domain (nsp8C), and indentified the resectioning site that is notably conserved in all the three groups of coronavirus. We subsequently crystallized the complex of SARS-CoV nsp8C and nsp7, and the 3-D structure of this domain revealed its capability to interfuse into the hexadecamer super-complex. This specific proteolysis may indicate one possible mechanism by which coronaviruses to switch from viral infection to genome replication and viral assembly stages.

Keywords

nsp8 / SARS-CoV / RNA primase / viral life cycle

Cite this article

Download citation ▾
null. New nsp8 isoform suggests mechanism for tuning viral RNA synthesis. Protein Cell, 2010, 1(2): 198-204 DOI:10.1007/s13238-010-0028-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF (392KB)

1003

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/