The nonlinear coupled-mode equations are rewritten by even and odd modes. We study modulation instability (MI) of dispersion-shifted fiber couplers when either even or odd mode is launched alone by using zero-dispersion wavelength relatively long (quasi-cw) pulses. The result shows that there are new types of MI in both the normal-dispersion and the anomalous-dispersion regimes. MI is concerned with forth-order dispersion and has no relation with third-order dispersion. Quasi-cw can be changed into pulses array under certain conditions. We can extract super short pulse from this. Furthermore, the bandwidth of gain spectra widens and its strength accretes as the input power increases.
A quasi-distributed dynamic and static strain sensor system consisting of 16 FBG sensors is designed by using an amplified-sponteneous emission (ASE) optical source, an optical tunable filter and a tunable laser. A resolution of about 5 has been achieved for dynamic strain measurement. The resolution for static strain measurement is about 1 μɛ.
A continuous-wave (CW) 457 nm blue laser operating at the power of 4.2 W is demonstrated by using a fiber coupled laser diode module pumped Nd: YVO4 and using LBO as the intra-cavity SHG crystal. With the optimization of laser cavity and crystal parameters, the laser operates at a very high efficiency. When the pumping power is about 31 W, the output at 457 nm reaches 4.2 W, and the optical to optical conversion efficiency is about 13.5% accordingly. The stability of the output power is better than 1.2% for 8 h continuously working.
The collected spectrum of the fiber Bragg grating (FBG) and the loss of the detected optical power are discussed with respect to the 3-dB bandwidth of a Fabry-Perot (F-P) type tunable optical filter (TOF), respectively. And the optimized parameters of the TOF are obtained consequently. It is demonstrated that the relationship between the transmission wavelength of the TOF and its drive voltage is nonlinear. A new method to compensate the nonlinearity of the TOF is proposed. The linear sweeping of the transmission wavelength of the TOF is achieved through modifying the drive voltage using interpolation algorithm. It is observed that the average error and the maximum error of the transmission wavelength are reduced sharply under linear fit. The dynamic strain sensing is realized by use of a reference FBG and moving averaging algorithm in this system.
Distributed polarization coupling in polarization-maintaining fibers can be detected by using a white light Michelson interferometer. This technique usually requires that only one polarization mode is excited. However, in practical measurement, the injection polarization direction could not be exactly aligned to one of the principal axes of the PMF, so the influence of the polarization extinction ratio should be considered. Based on the polarization coupling theory, the influence of the incident polarization extinction on the measurement result is evaluated and analyzed, and a method for distributed polarization coupling detection is developed when both two orthogonal eigenmodes are excited.
It is well known that adding more antennas at the transmitter or at the receiver may offer larger channel capacity in the multiple-input multiple-output(MIMO) communication systems. In this letter, a simple proof is presented for the fact that the channel capacity increases with an increase in the number of receiving antennas. The proof is based on the famous capacity formula of Foschini and Gans with matrix theory.
Real-time continuous-wave terahertz imaging is demonstrated with a 1.63 THz (184.31μm) optically-pumped terahertz laser (OPTL) and a 124 × 124 element room-temperature pyroelectric camera. Transmission-mode THz imaging is presented for the samples hidden in various wrapping materials. These experimental results reveal the possibility to construct a simple real-time THz imaging system applied to nondestructive inspection.
This paper presents a new method to increase the waveguide coupling efficiency in hybrid silicon lasers. We find that the propagation constant of the InGaAsP emitting layer can be equal to that of the Si resonant layer through improving the design size of the InP waveguide. The coupling power achieves 42% of the total power in the hybrid lasers when the thickness of the bonding layer is 100 nm. Our result is very close to 50% of the total power reported by Intel when the thickness of the thin bonding layer is less than 5 nm. Therefore, our invariable coupling power technique is simpler than Intel’s.
The hollow-core photonic crystal fibers (HC-PCFs) with integrity structure have been fabricated with an improved twice stack-and-draw technique. The transmission spectrum shows that five photonic band-gaps within 450–1100 nm have been obtained. And the green light transmission in the HC-PCFs has been observed remarkably.
Organic solar cells with stacked bulk heterojunction(BHJ) are investigated based on conjugated polymer. By using the solution spin-coating method, Poly[2-methoxy, 5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and ZnO nanoparticles (50 nm) are mixed as the optical sense layer. Ag is used as inter-layer to connect the upper BHJ cell and the lower cell. The structures are ITO/PEDOT:PSS/MEH-PPV /Ag / MEH-PPV:ZnO /Al. The open circuit voltage (VOC) of a stacked cell is about 3.7 times of that of an individual organic solar cell (ITO/PEDOT:PSS/MEH-PPV /Al). The short circuit current (JSC) of a stacked cell is increased by about 1.6 times of that of individual one.
A fiber Bragg grating (FBG) high-temperature and high pressure sensor has been designed and fabricated by using the Al2O3 thin-wall tube as a substrate. The test results show that the sensor can withstand a pressure range of 0–45 MPa and a temperature range of −10–300 °C, and has a pressure sensitivity of 0.0426 nm/MPa and a temperature sensitivity of 0.0112 nm /°C
The sputtering yield of the Si3N4 thin film is calculated by Monte Carlo method with different parameters. The dependences of the sputtering yield on the incident ion energy, the incident angle and the number of Gallium (Ga) and Arsenic (As) ions are predicted. The abnormal sputtering yield for As at 90 keV occurs when the incident angle reaches the range between 82° and 84°.
The relation between the power of the Brillouin signal and the strain is one of the bases of the distributed fiber sensors of temperature and strain. The coefficient of the Brillouin gain can be changed by the temperature and the strain that will affect the power of the Brillouin scattering. The relation between the change of the Brillouin gain coefficient and the strain is thought to be linear by many researchers. However, it is not always linear based on the theoretical analysis and numerical simulation. Therefore, errors will be caused if the relation between the change of the Brillouin gain coefficient and the strain is regarded as to be linear approximately for measuring the temperature and the strain. For this reason, the influence of the parameters on the Brillouin gain coefficient is proposed through theoretical analysis and numerical simulation.
A new quantum protocol to teleport an arbitrary unknown N-qubit entangled state from a sender to a fixed receiver under M controllers(M < N) is proposed. The quantum resources required are M non-maximally entangled Greenberger-Horne-Zeilinger (GHZ) state and N-M non-maximally entangled Einstein-Podolsky-Rosen (EPR) pairs. The sender performs N generalized Bell-state measurements on the 2N particles. Controllers take M single-particle measurement along x-axis, and the receiver needs to introduce one auxiliary two-level particle to extract quantum information probabilistically with the fidelity unit if controllers cooperate with it.
Due to variable symbol length of digital pulse interval modulation(DPIM), it is difficult to analyze the error performances of Turbo coded DPIM. To solve this problem, a fixed-length digital pulse interval modulation(FDPIM) method is provided. The FDPIM modulation structure is introduced. The packet error rates of uncoded FDPIM are analyzed and compared with that of DPIM. Bit error rates of Turbo coded FDPIM are simulated based on three kinds of analytical models under weak turbulence channel. The results show that packet error rate of uncoded FDPIM is inferior to that of uncoded DPIM. However, FDPIM is easy to be implemented and easy to be combined. with Turbo code for soft-decision because of its fixed length. Besides, the introduction of Turbo code in this modulation can decrease the average power about 10 dBm, which means that it can improve the error performance of the system effectively.
In order to diagnose the laser-produced plasmas, a focusing curved crystal spectrometer has been developed for measuring the X-ray lines radiated from a laser-produced plasmas. The design is based on the fact that the ray emitted from a source located at one focus of an ellipse will converge on the other focus by the reflection of the elliptical surface. The focal length and the eccentricity of the ellipse are 1350 mm and 0.9586, respectively. The spectrometer can be used to measure the X-ray lines in the wavelength range of 0.2-0.37 nm, and a LiF crystal (200) (2d = 0.4027 nm) is used as dispersive element covering Bragg angle from 30° to 67.5°. The spectrometer was tested on Shenguang-II which can deliver laser energy of 60–80 J/pulse and the laser wavelength is 0.35 μm. Photographs of spectra including the 1s2p 1P1-1s21S0 resonance line(w), the 1s2p 3P2-1s21S0 magnetic quadrupole line(x), the 1s2p 3P1-1s21S0 intercombination lines(y), the 1s2p 3S1-1s21S0 forbidden line(z) in helium-like Ti X XI and the 1s2s2p 2P3/2-1s22s 2S1/2 line(q) in lithium-like Ti X X have been recorded with a X-ray CCD camera. The experimental result shows that the wavelength resolution(λ/Δλ) is above 1000 and the elliptical crystal spectrometer is suitable for X-ray spectroscopy.
Composition dependence of bulk and surface phonon-polaritons in ternary mixed crystals are studied in the framework of the modified random-element-isodisplacement model and the Born-Huang approximation. The numerical results for several II–VI and III–V compound systems are performed, and the polariton frequencies as functions of the compositions for ternary mixed crystals AlxGa1−xAs, GaPxAs1−x, ZnSxSe1−x, GaAsxSb1−x, GaxIn1−xP, and ZnxCd1−xS as examples are given and discussed. The results show that the dependence of the energies of two branches of bulk phonon-polaritons which have phonon-like characteristics, and surface phonon-polaritons on the compositions of ternary mixed crystals are nonlinear and different from those of the corresponding binary systems.
Considering the influences of the spin on the ground state energy, the properties of a weak-coupled magnetopolaron in quantum dots are studied by using a linear combination operator and unitary transformation method. The numerical calculation results for CaP crystals have been given as examples.
In this unified model, we introduce the electron-phonon coupling time (tie) and laser pulse width (tp). For long pulses, it can substitute for the traditional thermal conduction model; while for ultrashort pulses, it can substitute for the standard two-temperature model. As an example of the gold target, we get the dependence of the electron and ion temperature evolvement on the time and position by solving the thermal conduction equation using the finite-difference time-domain (FDTD) method. It is in good agreement with experimental data. We obtain the critical temperature of the onset of ablation using the Saha equation and then obtain the theoretical value of the laser ablation threshold when the laser pulse width ranges from nanosecond to femtosecond timescale, which consists well with the experimental data.