Design and nonlinearity compensation of Fabry-Perot type tunable optical filters for dynamic strain sensing systems

Kun Liu , Wen-cai Jing , Tie-gen Liu , Da-gong Jia , Hong-xia Zhang , Yi-mo Zhang

Optoelectronics Letters ›› 2008, Vol. 4 ›› Issue (4)

PDF
Optoelectronics Letters ›› 2008, Vol. 4 ›› Issue (4) DOI: 10.1007/s11801-008-8025-3
Article

Design and nonlinearity compensation of Fabry-Perot type tunable optical filters for dynamic strain sensing systems

Author information +
History +
PDF

Abstract

The collected spectrum of the fiber Bragg grating (FBG) and the loss of the detected optical power are discussed with respect to the 3-dB bandwidth of a Fabry-Perot (F-P) type tunable optical filter (TOF), respectively. And the optimized parameters of the TOF are obtained consequently. It is demonstrated that the relationship between the transmission wavelength of the TOF and its drive voltage is nonlinear. A new method to compensate the nonlinearity of the TOF is proposed. The linear sweeping of the transmission wavelength of the TOF is achieved through modifying the drive voltage using interpolation algorithm. It is observed that the average error and the maximum error of the transmission wavelength are reduced sharply under linear fit. The dynamic strain sensing is realized by use of a reference FBG and moving averaging algorithm in this system.

Cite this article

Download citation ▾
Kun Liu, Wen-cai Jing, Tie-gen Liu, Da-gong Jia, Hong-xia Zhang, Yi-mo Zhang. Design and nonlinearity compensation of Fabry-Perot type tunable optical filters for dynamic strain sensing systems. Optoelectronics Letters, 2008, 4(4): DOI:10.1007/s11801-008-8025-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KerseyA. D., DavisM. A., PatrickH. J., LeBlancM., KooK. P., AskinsC. G., PutnamM. A., FriebeleE. J.. J. Lightwave. Technol., 1997, 15: 1442

[2]

NingY. N., MeldrumA., ShiW. J., MeggittB. T., PalmerA. W., GrattanK. T. V., LiL.. Meas. Sci. Technol., 1998, 9: 599

[3]

KerseyA. D., BerkoffT. A., MoreyW. W.. Electron. Lett., 1992, 28: 236

[4]

MelleS. M., LiuK., MeasuresR. M.. IEEE Photonic. Tech. L., 1992, 4: 516

[5]

MelleS. M., AlavieA. T., KarrS., CoroyT., LiuK., MeasuresR. M.. IEEE Photonic. Tech. L., 1993, 5: 263

[6]

KerseyA. D., BerkoffT. A., MoreyW. W.. Opt. Lett., 1993, 18: 1370

[7]

XuM. G., GeigerH., ArchambaultJ. L., ReekieL., DakinJ. P.. Electron. Lett., 1993, 29: 1510

[8]

DavisM. A., KerseyA. D.. Electron. Lett., 1994, 30: 75

[9]

DavisM. A., KerseyA. D.. J. Lightwave. Technol., 1995, 13: 1289

[10]

RibeiroA. B. L., FerreiraL. A., Tsvetkov, SantosJ. L.. Electron. Lett., 1996, 32: 382

[11]

LoY. L., HuangJ. F., SungP. H., YangM. D.. Meas. Sci. Technol., 2000, 11: 1456

[12]

ToddM. D., JohnsonG. A., AlthouseB. L.. Meas. Sci. Technol., 2001, 12: 771

[13]

RaoY. J., RibeiroA. B. L., JacksonD. A., ZhangL., BennionI.. Opt. Commun., 1996, 125: 53

[14]

RaoY. J.. Meas. Sci. Technol., 1997, 8: 355

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/