Epigenetic and epitranscriptomic regulations of metabolic dysfunction-associated steatotic liver disease

Qiantao Zheng , Liangyou Rui

Metabolism and Target Organ Damage ›› 2024, Vol. 4 ›› Issue (4) : 43

PDF
Metabolism and Target Organ Damage ›› 2024, Vol. 4 ›› Issue (4) :43 DOI: 10.20517/mtod.2024.75
Review

Epigenetic and epitranscriptomic regulations of metabolic dysfunction-associated steatotic liver disease

Author information +
History +
PDF

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by excessive hepatic lipid accumulation and can progress to metabolic dysfunction-associated steatohepatitis (MASH), which is manifested with persistent liver injury, inflammation, and fibrosis, increasing the risk for cirrhosis and hepatocellular carcinoma. Aberrant epigenetic reprogramming and epitranscriptomic remodeling emerge to be a driving force for MASLD and MASH. SNAIL1 and SLUG, two related transcriptional regulators, regulate de novo lipogenesis and liver steatosis by opposing epigenetic mechanisms. RNA m6A modification regulates not only liver steatosis but also liver injury and regeneration. MASLD is associated with changes in the expression of m6A writers, erasers, and readers, which significantly influence its progression.

Keywords

SNAIL1 / SLUG / m6A / MASLD / MASH

Cite this article

Download citation ▾
Qiantao Zheng, Liangyou Rui. Epigenetic and epitranscriptomic regulations of metabolic dysfunction-associated steatotic liver disease. Metabolism and Target Organ Damage, 2024, 4(4): 43 DOI:10.20517/mtod.2024.75

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rui L.Reprogramming of hepatic metabolism and microenvironment in nonalcoholic steatohepatitis.Annu Rev Nutr2022;42:91-113 PMCID:PMC10122183

[2]

Younossi ZM,de Avila L.The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis.J Hepatol2019;71:793-801

[3]

Ristic-Medic D,Vucic V.Crosstalk between dietary patterns, obesity and nonalcoholic fatty liver disease.World J Gastroenterol2022;28:3314-33 PMCID:PMC9346467

[4]

Harrison SA, Bedossa P, Guy CD, et al; MAESTRO-NASH Investigators. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N Engl J Med 2024;390:497-509.

[5]

Fabbrini E,Klein S.Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications.Hepatology2010;51:679-89 PMCID:PMC3575093

[6]

Rui L.Energy metabolism in the liver.Compr Physiol2014;4:177-97 PMCID:PMC4050641

[7]

Jaenisch R.Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals.Nat Genet2003;33 Suppl:245-54

[8]

Viscarra J.Epigenetic regulation of hepatic lipogenesis: role in hepatosteatosis and diabetes.Diabetes2020;69:525-31 PMCID:PMC7085244

[9]

Meyer KD,Zumbo P,Mason CE.Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons.Cell2012;149:1635-46 PMCID:PMC3383396

[10]

Dominissini D,Schwartz S.Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq.Nature2012;485:201-6

[11]

Liu J,Han D.A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation.Nat Chem Biol2014;10:93-5 PMCID:PMC3911877

[12]

Ping XL,Wang L.Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase.Cell Res2014;24:177-89 PMCID:PMC3915904

[13]

Murakami S.Hidden codes in mRNA: control of gene expression by m6A.Mol Cell2022;82:2236-51 PMCID:PMC9216239

[14]

Shi H,He C.Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers.Mol Cell2019;74:640-50 PMCID:PMC6527355

[15]

Zaccara S,Jaffrey SR.Reading, writing and erasing mRNA methylation.Nat Rev Mol Cell Biol2019;20:608-24

[16]

Lin Y,Zhou BP.Epigenetic regulation of EMT: the snail story.Curr Pharm Des2014;20:1698-705 PMCID:PMC4005722

[17]

Zhou W,Kuperwasser C.Molecular regulation of Snai2 in development and disease.J Cell Sci2019;132:jcs235127

[18]

Batlle E,Francí C.The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells.Nat Cell Biol2000;2:84-9

[19]

Peinado H,Esteller M.Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex.Mol Cell Biol2004;24:306-19 PMCID:PMC303344

[20]

Kim MH,Zheng Q.LepRb+ cell-specific deletion of slug mitigates obesity and nonalcoholic fatty liver disease in mice.J Clin Invest2023;133:e156722 PMCID:PMC9927931

[21]

Sun C,Liu Y.Adipose snail1 regulates lipolysis and lipid partitioning by suppressing adipose triacylglycerol lipase expression.Cell Rep2016;17:2015-27 PMCID:PMC5131732

[22]

Liu Y,Sun C.Insulin/snail1 axis ameliorates fatty liver disease by epigenetically suppressing lipogenesis.Nat Commun2018;9:2751 PMCID:PMC6048127

[23]

Liu Y,Jiang L.Hepatic slug epigenetically promotes liver lipogenesis, fatty liver disease, and type 2 diabetes.J Clin Invest2020;130:2992-3004 PMCID:PMC7260003

[24]

Wang P,Wu WS.Hepatic Snai1 and Snai2 promote liver regeneration and suppress liver fibrosis in mice.Cell Rep2024;43:113875 PMCID:PMC11025633

[25]

Sekiya S.Glycogen synthase kinase 3 β-dependent Snail degradation directs hepatocyte proliferation in normal liver regeneration.Proc Natl Acad Sci U S A2011;108:11175-80 PMCID:PMC3131331

[26]

Rowe RG,Shimizu-Hirota R.Hepatocyte-derived Snail1 propagates liver fibrosis progression.Mol Cell Biol2011;31:2392-403 PMCID:PMC3133420

[27]

Jia G,Zhao X.N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO.Nat Chem Biol2011;7:885-7 PMCID:PMC3218240

[28]

Fu Y,Pang X.FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA.Nat Commun2013;4:1798 PMCID:PMC3658177

[29]

Frayling TM,Weedon MN.A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity.Science2007;316:889-94 PMCID:PMC2646098

[30]

Dina C,Gallina S.Variation in FTO contributes to childhood obesity and severe adult obesity.Nat Genet2007;39:724-6

[31]

Scott LJ,Bonnycastle LL.A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants.Science2007;316:1341-5 PMCID:PMC3214617

[32]

Scuteri A,Chen WM.Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits.PLoS Genet2007;3:e115 PMCID:PMC1934391

[33]

Thorleifsson G,Gudbjartsson DF.Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity.Nat Genet2009;41:18-24

[34]

Willer CJ, Speliotes EK, Loos RJ, et al; Wellcome Trust Case Control Consortium, Genetic Investigation of ANthropometric Traits Consortium. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009;41:25-34. PMCID:PMC2695662

[35]

Chen A,Cheng S.FTO promotes SREBP1c maturation and enhances CIDEC transcription during lipid accumulation in HepG2 cells.Biochim Biophys Acta Mol Cell Biol Lipids2018;1863:538-48

[36]

Kang H,Yu L,Liang M.FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation.J Cell Biochem2018;119:5676-85

[37]

Hu Y,Zhang L.GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m6A on lipogenic mRNAs.RNA Biol2020;17:930-42 PMCID:PMC7549648

[38]

Salisbury DA,Zhang Z.Transcriptional regulation of N6-methyladenosine orchestrates sex-dimorphic metabolic traits.Nat Metab2021;3:940-53 PMCID:PMC8422857

[39]

Wang YF,Li ZX.METTL14 downregulation drives S100A4+ monocyte-derived macrophages via MyD88/NF-κB pathway to promote MAFLD progression.Signal Transduct Target Ther2024;9:91 PMCID:PMC11021505

[40]

Li X,Lu M.The methyltransferase METTL3 negatively regulates nonalcoholic steatohepatitis (NASH) progression.Nat Commun2021;12:7213 PMCID:PMC8664922

[41]

Zhong X,Frazier K.Circadian clock regulation of hepatic lipid metabolism by modulation of m6A mRNA methylation.Cell Rep2018;25:1816-28.e4 PMCID:PMC6532766

[42]

Xie W,Xu YQ,Li SM.METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism.Biochem Biophys Res Commun2019;518:120-6

[43]

Wang W,Han L,Xu AL.Silencing METTL14 alleviates liver injury in non-alcoholic fatty liver disease by regulating mitochondrial homeostasis.Biomol Biomed2024;24:505-19 PMCID:PMC11088893

[44]

Yang Y,Yang X.Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma.Mol Ther2022;30:2342-53 PMCID:PMC9171149

[45]

Peng Z,Wang X.METTL3-m6A-rubicon axis inhibits autophagy in nonalcoholic fatty liver disease.Mol Ther2022;30:932-46 PMCID:PMC8821937

[46]

Zhou B,Xu L.N6 -methyladenosine reader protein YT521-B homology domain-containing 2 suppresses liver steatosis by regulation of mRNA stability of lipogenic genes.Hepatology2021;73:91-103

[47]

Zhang X,Zhang X.N6-methyladenosine modification governs liver glycogenesis by stabilizing the glycogen synthase 2 mRNA.Nat Commun2022;13:7038 PMCID:PMC9671881

[48]

Wei J,Lu D.HRD1-mediated METTL14 degradation regulates m6A mRNA modification to suppress ER proteotoxic liver disease.Mol Cell2021;81:5052-65.e6 PMCID:PMC8751812

[49]

Wang S,Sun J.m6A modification-tuned sphingolipid metabolism regulates postnatal liver development in male mice.Nat Metab2023;5:842-60

[50]

Li R,Xiao C.FTO deficiency in older livers exacerbates ferroptosis during ischaemia/reperfusion injury by upregulating ACSL4 and TFRC.Nat Commun2024;15:4760 PMCID:PMC11150474

[51]

Cao X,Chen Y.Mettl14-mediated m6A modification facilitates liver regeneration by maintaining endoplasmic reticulum homeostasis.Cell Mol Gastroenterol Hepatol2021;12:633-51 PMCID:PMC8261664

[52]

Pan Y,Zhang X.METTL3 drives NAFLD-related hepatocellular carcinoma and is a therapeutic target for boosting immunotherapy.Cell Rep Med2023;4:101144 PMCID:PMC10439254

[53]

Kan RL,Sallam T.Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation.Trends Genet2022;38:182-93 PMCID:PMC9093201

[54]

Xu Z,Sui X.Crosstalk between histone and m6A modifications and emerging roles of m6A RNA Methylation.Front Genet2022;13:908289 PMCID:PMC9240596

[55]

Xu QC,Shi YH.METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m6A-YTHDF2-dependent manner.Oncogene2022;41:1622-33 PMCID:PMC8913368

[56]

Du QY,Du WQ.METTL3 potentiates progression of cervical cancer by suppressing ER stress via regulating m6A modification of TXNDC5 mRNA.Oncogene2022;41:4420-32

[57]

Wang Q,Ding Q.METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance.Gut2020;69:1193-205

[58]

Xiong J,Zhu J.Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells.Mol Cell2022;82:1660-77.e10

[59]

Chen X,Xu X.METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer.Mol Cancer2020;19:106 PMCID:PMC7298962

[60]

Wei J.Chromatin and transcriptional regulation by reversible RNA methylation.Curr Opin Cell Biol2021;70:109-15 PMCID:PMC8119380

[61]

Wang Y,Yue M.N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications.Nat Neurosci2018;21:195-206 PMCID:PMC6317335

[62]

Chen J,Huang C.m6A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2.Genomics Proteomics Bioinformatics2019;17:154-68 PMCID:PMC6620265

[63]

Dou X,Xiao Y.METTL14 is a chromatin regulator independent of its RNA N6-methyladenosine methyltransferase activity.Protein Cell2023;14:683-97 PMCID:PMC10501186

[64]

Shi Y.Histone modifications in NAFLD: mechanisms and potential therapy.Int J Mol Sci2023;24:14653 PMCID:PMC10572202

[65]

Fu S,Tan Y.Role of histone deacetylase on nonalcoholic fatty liver disease.Expert Rev Gastroenterol Hepatol2021;15:353-61

[66]

Noce B,Fioravanti R.LSD1 inhibitors for cancer treatment: focus on multi-target agents and compounds in clinical trials.Front Pharmacol2023;14:1120911 PMCID:PMC9932783

[67]

Ramms B,Zhu H.Systemic LSD1 inhibition prevents aberrant remodeling of metabolism in obesity.Diabetes2022;71:2513-29 PMCID:PMC9750949

[68]

Peng S,Ju D.Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1.Sci Transl Med2019;11:eaau7116

[69]

Huang Y,Li Q.Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5.Nucleic Acids Res2015;43:373-84 PMCID:PMC4288171

[70]

Dang Y,Yang Y.Ling-gui-zhu-gan decoction alleviates hepatic steatosis through SOCS2 modification by N6-methyladenosine.Biomed Pharmacother2020;127:109976

[71]

Wu J,Yu J.Resveratrol attenuates high-fat diet induced hepatic lipid homeostasis disorder and decreases m6A RNA methylation.Front Pharmacol2020;11:568006 PMCID:PMC7845411

[72]

Luo P,Jing W,Long X.N6-methyladenosine RNA modification in nonalcoholic fatty liver disease.Trends Endocrinol Metab2023;34:838-48

[73]

Li W,Quek J.The growing prevalence of nonalcoholic fatty liver disease (NAFLD), determined by fatty liver index, amongst young adults in the United States. A 20-year experience.Metab Target Organ Damage2022;2:19

[74]

Bril F,Lomonaco R.Assessing strategies to target screening for advanced liver fibrosis among overweight and obese patients.Metab Target Organ Damage2022;2:11 PMCID:PMC9400455

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/