Regulatory T cell-based therapies for type 1 diabetes: a narrative review
Tsvetelina Velikova , Georgi V. Vasilev , Diya Linkwinstar , Elina Siliogka , Maria Kokudeva , Dimitrina Miteva , Georgi H. Vasilev , Milena Gulinac , Kiril Atliev , Russka Shumnalieva
Metabolism and Target Organ Damage ›› 2025, Vol. 5 ›› Issue (2) : 18
Regulatory T cell-based therapies for type 1 diabetes: a narrative review
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic insulin-secreting beta cells, resulting in hyperglycemia and a lifelong need for exogenous insulin therapy. Regulatory T cells (Tregs) are essential for maintaining immune tolerance and preventing autoimmune reactions. It has been shown that dysfunctional Tregs participate in the pathophysiology of T1D. Therapeutic approaches designed to enhance Treg stability, survival, and function have progressively emerged as a promising treatment strategy for T1D. This narrative review explores the potential of Treg cell-based therapy as a therapeutic tool to alter the natural history of T1D. It discusses different pharmacological strategies to enhance Treg stability and function, as well as the latest advances in Treg cell-based therapies, including adoptive Treg cell therapy and genetic engineering of Tregs. It also outlines current challenges and future research directions for integrating Treg cell-based therapy into clinical practice, aiming to provide a comprehensive overview of its potential benefits and limitations as an innovative therapeutic intervention for T1D.
Regulatory T cells / type 1 diabetes / immune regulation / autoimmune diseases / Treg cell-based therapy / pancreatic beta cells / immunotherapy / T1D management / immune tolerance / cell-based therapy
| [1] |
|
| [2] |
|
| [3] |
Gregory GA, Robinson TIG, Linklater SE, et al; International Diabetes Federation Diabetes Atlas Type 1 Diabetes in Adults Special Interest Group. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol. 2022;10:741-60. |
| [4] |
World Obesity Federation. World Obesity Atlas 2023. Available from: https://www.aafp.org/pubs/afp/issues/2018/0801/p154.html. [Last accessed on 26 Mar 2025]. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
Hughes JW, Riddlesworth TD, DiMeglio LA, Miller KM, Rickels MR, McGill JB; T1D Exchange Clinic Network. Autoimmune diseases in children and adults with type 1 diabetes from the T1D exchange clinic registry. J Clin Endocrinol Metab. 2016;101:4931-7. PMCID:PMC7530541 |
| [9] |
|
| [10] |
|
| [11] |
Diabetes Association Professional Practice Committee. 2. Diagnosis and classification of diabetes: standards of care in diabetes-2024.Diabetes Care2024;47:S20-42 PMCID:PMC10725812 |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
Redondo MJ, Geyer S, Steck AK, et al; Type 1 Diabetes TrialNet Study Group. A type 1 diabetes genetic risk score predicts progression of islet autoimmunity and development of type 1 diabetes in individuals at risk. Diabetes Care. 2018;41:1887-94.Diabetes Care2018;41:1887-94 PMCID:PMC6105323 |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies.Physiol Rev2011;91:79-118 |
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
Herold KC, Bundy BN, Long SA, et al; Type 1 Diabetes TrialNet Study Group. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med. 2019;381:603-13. PMCID:PMC6776880 |
| [106] |
Sims EK, Bundy BN, Stier K, et al; Type 1 Diabetes TrialNet Study Group. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci Transl Med. 2021;13:eabc8980. PMCID:PMC8610022 |
| [107] |
|
| [108] |
|
| [109] |
Sims EK, Besser REJ, Dayan C, et al; NIDDK Type 1 Diabetes TrialNet Study Group. Screening for type 1 diabetes in the general population: a status report and perspective. Diabetes. 2022;71:610-23. PMCID:PMC9114719 |
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
Schweiger D. Recent advances in immune-based therapies for type 1 diabetes.Horm Res Paediatr2023;96:631-45 |
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
Long SA, Rieck M, Sanda S, et al; Diabetes TrialNet and the Immune Tolerance Network. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes. 2012;61:2340-8. PMCID:PMC3425404 |
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
/
| 〈 |
|
〉 |