Metabolic mysteries of copper dysregulation in Wilson disease

Rolf Teschke , Axel Eickhoff

Metabolism and Target Organ Damage ›› 2025, Vol. 5 ›› Issue (3) : 32

PDF
Metabolism and Target Organ Damage ›› 2025, Vol. 5 ›› Issue (3) :32 DOI: 10.20517/mtod.2024.134
Review

Metabolic mysteries of copper dysregulation in Wilson disease

Author information +
History +
PDF

Abstract

Wilson disease, a well-established genetic disorder characterized by impaired copper excretion and toxic copper accumulation in the liver, has clear clinical presentations and diagnostic criteria. However, the metabolic and molecular pathways leading to liver injury - a critical hallmark of the disease - remain largely cryptic and require new analytical approaches to elucidate underlying mechanisms. In Wilson disease, supraphysiological and toxic amounts of hepatic copper arise due to genetically reduced biliary excretion. Interestingly, hepatic iron accumulation of unknown etiology is also observed. Both metals contribute to the production of reactive oxygen species (ROS), including singlet oxygen, superoxide anions, and highly disruptive hydroxyl radicals generated via the Haber-Weiss and Fenton reactions. Historically, liver injury has been attributed to copper-induced toxicity (cuproptosis) without sufficient consideration of ROS involvement, neglecting the significant ROS burden in hepatic tissue. A revised concept of cuproptosis incorporates ROS, particularly hydroxyl radicals, which convert copper ions into reactive intermediates such as copper peroxyl, copper hydroperoxyl, and copper superoxyl species. These intermediates induce mitochondrial oxidative stress by covalently binding to mitochondrial constituents including lipoylated dihydrolipoamide S-acetyltransferase (DLAT), leading to its aggregation and triggering regulated cell death via cuproptosis. Thus, copper ions must first be converted into reactive intermediates to initiate cuproptosis effectively. Furthermore, singlet oxygen and superoxide anion hydroxyl radicals generated by hepatic iron ions may promote regulated cell death via ferroptosis. This process involves the accumulation of lipid peroxides derived from polyunsaturated fatty acids in mitochondrial membranes, with malondialdehyde (MDA) serving as a diagnostic marker. Consequences include enhanced mitochondrial membrane rigidity, disruption of plasma membrane integrity, and ultimately cell death. This mechanistic pathway requires the activity of iron-dependent enzymes such as lipoxygenases, ferroptosis suppressor protein 1, glutathione peroxidase 4, dihydroorotate dehydrogenase, and lysosomal iron release from ferritin stores. To sum up, the definition of cuproptosis requires refinement to incorporate its mechanistic dependence on ROS, and its quantitative contribution to liver injury should be reassessed alongside hepatic iron and ferroptosis.

Keywords

Copper / Wilson disease / cuproptosis / ferroptosis / reactive oxygen species / immune reactions

Cite this article

Download citation ▾
Rolf Teschke, Axel Eickhoff. Metabolic mysteries of copper dysregulation in Wilson disease. Metabolism and Target Organ Damage, 2025, 5(3): 32 DOI:10.20517/mtod.2024.134

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali H.What are heavy metals?.Toxicol Environ Chem2018;100:6-19

[2]

Briffa J,Blundell R.Heavy metal pollution in the environment and their toxicological effects on humans.Heliyon2020;6:e04691 PMCID:PMC7490536

[3]

Jomova K,Nepovimova E,Valko M.Heavy metals: toxicity and human health effects.Arch Toxicol2025;99:153-209 PMCID:PMC11742009

[4]

Fisher RM. Heavy metals. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557806/. [Last accessed on 16 Jul 2025].

[5]

Teschke R.Heavy metals, halogenated hydrocarbons, phthalates, glyphosate, cordycepin, alcohol, drugs, and herbs, assessed for liver injury and mechanistic steps.Front Biosci2022;27:314

[6]

Teschke R.Aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc: molecular aspects in experimental liver injury.Int J Mol Sci2022;23:12213 PMCID:PMC9602583

[7]

Tchounwou PB,Patlolla AK.Heavy metal toxicity and the environment.Exp Suppl2012;101:133-64 PMCID:PMC4144270

[8]

Järup L.Hazards of heavy metal contamination.Br Med Bull2003;68:167-82

[9]

Rehman K,Waheed I.Prevalence of exposure of heavy metals and their impact on health consequences.J Cell Biochem2018;119:157-84

[10]

Teschke R.Copper, iron, cadmium, and arsenic, all generated in the universe: elucidating their environmental impact risk on human health including clinical liver injury.Int J Mol Sci2024;25:6662 PMCID:PMC11203474

[11]

Phatak P,Wurster M.A phase 1/2, dose-escalation trial of deferasirox for the treatment of iron overload in HFE-related hereditary hemochromatosis.Hepatology2010;52:1671-779 PMCID:PMC3034044

[12]

Niederau C,Sonnenberg A,Trampisch HJ.Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis.N Engl J Med1985;313:1256-62

[13]

Niederau C,Stremmel W.Epidemiology, clinical spectrum and prognosis of hemochromatosis.Adv Exp Med Biol1994;356:293-302

[14]

Niederau C,Pürschel A,Häussinger D.Long-term survival in patients with hereditary hemochromatosis.Gastroenterology1996;110:1107-19

[15]

Corti P,Faraguna MC.Haemochromatosis in children: a national retrospective cohort promoted by the A.I.E.O.P. (Associazione Italiana Emato-Oncologia Pediatrica) study group.Br J Haematol2024;204:306-14

[16]

Strohmeyer G,Stremmel W.Survival and causes of death in hemochromatosis. Observations in 163 patients.Ann N Y Acad Sci1988;526:245-57

[17]

Teschke R.Hemochromatosis: ferroptosis, ROS, Gut microbiome, and clinical challenges with alcohol as confounding variable.Int J Mol Sci2024;25:2668 PMCID:PMC10931627

[18]

Weiss KH,Tuma S.Copper-induced translocation of the Wilson disease protein ATP7B independent of Murr1/COMMD1 and Rab7.Am J Pathol2008;173:1783-94 PMCID:PMC2626389

[19]

Merle U,Ferenci P.Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study.Gut2007;56:115-20 PMCID:PMC1856673

[20]

Stremmel W.Therapeutic strategies in Wilson disease: pathophysiology and mode of action.Ann Transl Med2021;9:732 PMCID:PMC8106045

[21]

Weiskirchen S,Weiskirchen R.Determination of copper poisoning in Wilson’s disease using laser ablation inductively coupled plasma mass spectrometry.Ann Transl Med2019;7:S72 PMCID:PMC6531650

[22]

Stremmel W.Bis-choline tetrathiomolybdate as old drug in a new design for Wilson’s disease: good for brain and liver?.Hepatology2019;69:901-3 PMCID:PMC6590651

[23]

Kim P,Thoröe-Boveleth S.Analyzing the therapeutic efficacy of bis-choline-tetrathiomolybdate in the Atp7b-/- copper overload mouse model.Biomedicines2021;9:1861 PMCID:PMC8698685

[24]

Ferenci P,Członkowska A.Age and sex but not ATP7B genotype effectively influence the clinical phenotype of Wilson disease.Hepatology2019;69:1464-76

[25]

Weiss KH.Evolving perspectives in Wilson disease: diagnosis, treatment and monitoring.Curr Gastroenterol Rep2012;14:1-7

[26]

Stremmel W,Niederau C,Kreuzpaintner G.Wilson disease: clinical presentation, treatment, and survival.Ann Intern Med1991;115:720-6

[27]

Teschke R.Wilson disease: copper-mediated cuproptosis, iron-related ferroptosis, and clinical highlights, with comprehensive and critical analysis update.Int J Mol Sci2024;25:4753 PMCID:PMC11084815

[28]

Gaberšek M,Gosar M.Attic dust: an archive of historical air contamination of the urban environment and potential hazard to health?.J Hazard Mater2022;432:128745

[29]

Ghobakhloo S,Mostafaii GR.Biomonitoring of metals in the blood and urine of waste recyclers from exposure to airborne fine particulate matter (PM2.5).J Environ Health Sci Eng2025;23:2 PMCID:PMC11582262

[30]

Poggere G,Barbosa JZ,Corrêa RS.Soil contamination by copper: sources, ecological risks, and mitigation strategies in Brazil.J. Trace Elem Miner2023;4:100059

[31]

Karim MA,Juniar H.Kinetic, isotherm, and thermodynamic study of Cu(II) ions removal from groundwater using acid-activated carbon based on coconut tree waste (Cocos nucifera L.).Ecol Eng Environ Technol2025;26:1-16

[32]

Shabbir Z,Shabbir A.Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment.Chemosphere2020;259:127436

[33]

Iakovidis I,Piperakis SM.Copper and its complexes in medicine: a biochemical approach.Mol Biol Int2011;2011:594529 PMCID:PMC3195324

[34]

Merle U,Tuma S,Naldini L.Lentiviral gene transfer ameliorates disease progression in Long-Evans cinnamon rats: an animal model for Wilson disease.Scand J Gastroenterol2006;41:974-82

[35]

Mi X,Yan J.Activation of HIF-1 signaling ameliorates liver steatosis in zebrafish atp7b deficiency (Wilson’s disease) models.Biochim Biophys Acta Mol Basis Dis2020;1866:165842

[36]

Lizaola-Mayo BC,Lam-Himlin DM.Exogenous copper exposure causing clinical wilson disease in a patient with copper deficiency.BMC Gastroenterol2021;21:278 PMCID:PMC8265109

[37]

Royer A. Copper toxicity. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557456/. [Last accessed on 16 Jul 2025].

[38]

Liggi M,Civolani A,Sorbello O.The relationship between copper and steatosis in Wilson’s disease.Clin Res Hepatol Gastroenterol2013;37:36-40

[39]

Chen L,Wang F.Copper homeostasis and cuproptosis in health and disease.Signal Transduct Target Ther2022;7:378 PMCID:PMC9681860

[40]

Doguer C,Collins JF.Intersection of iron and copper metabolism in the mammalian intestine and liver.Compr Physiol2018;8:1433-61 PMCID:PMC6460475

[41]

La Fontaine S, Ackland ML, Mercer JF. Mammalian copper-transporting P-type ATPases, ATP7A and ATP7B: emerging roles.Int J Biochem Cell Biol2010;42:206-9 PMCID:PMC2846448

[42]

Chang IJ.The genetics of Wilson disease.Handb Clin Neurol2017;142:19-34 PMCID:PMC5648646

[43]

Lutsenko S.Copper trafficking to the secretory pathway.Metallomics2016;8:840-52 PMCID:PMC5548098

[44]

Yu CH,Nokhrin S.The structure of metal binding domain 1 of the copper transporter ATP7B reveals mechanism of a singular Wilson disease mutation.Sci Rep2018;8:581 PMCID:PMC5766562

[45]

Hayashi H,Fujita Y.Compound overload of copper and iron in patients with Wilson's disease.Med Mol Morphol2006;39:121-6

[46]

Kadiiska MB.In vivo copper mediated free radical production: an ESR spin-trapping study.Spectrochim Acta A Mol Biomol Spectrosc2002;58:1227-39

[47]

Shiono Y,Hayashi H.Iron accumulation in the liver of male patients with Wilson’s disease.Am J Gastroenterol2001;96:3147-51

[48]

Tsang T,Brady DC.Copper biology.Curr Biol2021;31:R421-7

[49]

Xue Q,Klionsky DJ,Liu J.Copper metabolism in cell death and autophagy.Autophagy2023;19:2175-95 PMCID:PMC10351475

[50]

Gromadzka G,Litwin T.Iron metabolism is disturbed and anti-copper treatment improves but does not normalize iron metabolism in Wilson’s disease.Biometals2021;34:407-14 PMCID:PMC7940312

[51]

Li Y,Zhou Y.Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death.Cell Commun Signal2023;21:327 PMCID:PMC10652626

[52]

Pak K,Sadowski B,Torres D.Wilson’s disease and iron overload: pathophysiology and therapeutic implications.Clin Liver Dis2021;17:61-6 PMCID:PMC7916432

[53]

Tang D,Kroemer G.Cuproptosis: a copper-triggered modality of mitochondrial cell death.Cell Res2022;32:417-8 PMCID:PMC9061796

[54]

Tsvetkov P,Petrova B.Copper induces cell death by targeting lipoylated TCA cycle proteins.Science2022;375:1254-61 PMCID:PMC9273333

[55]

Wang Y,Zhou F.Cuproptosis: a new form of programmed cell death.Cell Mol Immunol2022;19:867-8 PMCID:PMC9338229

[56]

Xie J,Gao Y.Cuproptosis: mechanisms and links with cancers.Mol Cancer2023;22:46 PMCID:PMC9990368

[57]

Antczak-Kowalska M,Eyileten C.Autoantibodies in Wilson disease: impact on clinical course.JIMD Rep2022;63:508-17 PMCID:PMC9458613

[58]

Jańczyk W,Trojanowska I,Cukrowska B.Prevalence and significance of autoantibody seropositivity in children with Wilson’s disease.Diagnostics2023;13:768 PMCID:PMC9955693

[59]

Penning LC,Czlonkowska A.A century of progress on Wilson disease and the enduring challenges of genetics, diagnosis, and treatment.Biomedicines2023;11:420 PMCID:PMC9953205

[60]

Stremmel W,Liere R,van Helden J.Wilson disease - the impact of hyperimmunity on disease activity: a case report.World J Clin Cases2021;9:1386-93 PMCID:PMC7896689

[61]

Goyal MK,Patil SA,Taly AB.Do cytokines have any role in Wilson’s disease?.Clin Exp Immunol2008;154:74-9 PMCID:PMC2561097

[62]

Hopkins RG.Copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA in human T-lymphocytes.J Nutr1997;127:257-62

[63]

Hopkins RG.Transcriptional regulation of interkeukin-2 gene expression is impaired by copper deficiency in Jurkat T lymphocytes.J Nutr1999;129:596-601

[64]

Kalita J,Misra UK,Khan H.A study of oxidative stress, cytokines and glutamate in Wilson disease and their asymptomatic siblings.J Neuroimmunol2014;274:141-8

[65]

Kelley DS,Taylor PC,Turnlund JR.Effects of low-copper diets on human immune response.Am J Clin Nutr1995;62:412-6

[66]

Kisseleva T.Molecular and cellular mechanisms of liver fibrosis and its regression.Nat Rev Gastroenterol Hepatol2021;18:151-66

[67]

Wu P,Cheng N,Han Y.Inflammatory cytokines expression in Wilson’s disease.Neurol Sci2019;40:1059-66

[68]

Cai X,Ma X.Altered diversity and composition of gut microbiota in Wilson’s disease.Sci Rep2020;10:21825 PMCID:PMC7732847

[69]

Taylor AA,Garry MR.Critical review of exposure and effects: implications for setting regulatory health criteria for ingested copper.Environ Manage2020;65:131-59 PMCID:PMC6960211

[70]

Dev S,Hamilton JP.Wilson disease: update on pathophysiology and treatment.Front Cell Dev Biol2022;10:871877 PMCID:PMC9108485

[71]

Russell K,Orr DW.Dietary copper restriction in Wilson’s disease.Eur J Clin Nutr2018;72:326-31

[72]

Gioilli BD,Fieten H.Secretion and uptake of copper via a small copper carrier in blood fluid.Metallomics2022;14:mfac006 PMCID:PMC8962702

[73]

van den Berghe PV, Klomp LW. New developments in the regulation of intestinal copper absorption.Nutr Rev2009;67:658-72

[74]

Nose Y.Mechanism and regulation of intestinal copper absorption.Genes Nutr2010;5:11-4

[75]

Fontes A,Bierła JB.Copper impairs the intestinal barrier integrity in Wilson disease.Metabolism2024;158:155973

[76]

Lane DJ,Merlot AM,Richardson DR.Duodenal cytochrome b (DCYTB) in iron metabolism: an update on function and regulation.Nutrients2015;7:2274-96 PMCID:PMC4425144

[77]

Dzieżyc-Jaworska K,Członkowska A.Clinical manifestations of Wilson disease in organs other than the liver and brain.Ann Transl Med2019;7:S62 PMCID:PMC6531658

[78]

Chen H,Xing J.Role and mechanisms of cuproptosis in the pathogenesis of Wilson’s disease (Review).Int J Mol Med2025;56:117 PMCID:PMC12140093

[79]

Purchase R.The link between copper and Wilson’s disease.Sci Prog2013;96:213-23 PMCID:PMC10365353

[80]

Tapiero H,Tew KD.Trace elements in human physiology and pathology. Copper.Biomed Pharmacother2003;57:386-98 PMCID:PMC6361146

[81]

Gaetke LM.Copper toxicity, oxidative stress, and antioxidant nutrients.Toxicology2003;189:147-63

[82]

Gaetke LM,Chow CK.Copper: toxicological relevance and mechanisms.Arch Toxicol2014;88:1929-38 PMCID:PMC4339675

[83]

Li M,Velkov T,Dai C.Copper exposure induces mitochondrial dysfunction and hepatotoxicity via the induction of oxidative stress and PERK/ATF4 -mediated endoplasmic reticulum stress.Environ Pollut2024;352:124145

[84]

Członkowska A,Dusek P.Wilson disease.Nat Rev Dis Primers2018;4:21 PMCID:PMC6416051

[85]

Zischka H.Mitochondrial copper homeostasis and its derailment in Wilson disease.Int J Biochem Cell Biol2018;102:71-5

[86]

Dong QY.Advance in the pathogenesis and treatment of Wilson disease.Transl Neurodegener2012;1:23 PMCID:PMC3526418

[87]

Patil M,Krishnamurthy AC.A review and current perspective on Wilson disease.J Clin Exp Hepatol2013;3:321-36 PMCID:PMC3940372

[88]

Zang S,Zeng Y.Elucidating cuproptosis-linked redox dynamics in Wilson’s disease via a reversible ratiometric fluorescence strategy.Chem Commun2025;61:5507-10

[89]

Immergluck J,Anilkumar AC. Wilson disease. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441990/. [Last accessed on 16 Jul 2025].

[90]

Cao S,Sun Z.Role of cuproptosis in understanding diseases.Hum Cell2023;36:1244-52 PMCID:PMC10165592

[91]

Li X,Li J.Valence-tailored copper-based nanoparticles for enhanced chemodynamic therapy through prolonged ROS generation and potentiated GSH depletion.Nano Res2024;17:6342-52

[92]

Liu M,Zhao Y,Shi D.Hydroxyl radical-involved cancer therapy via Fenton reactions.Front Chem Sci Eng2022;16:345-63

[93]

Yoon J.Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the o-o bond.J Am Chem Soc2007;129:13127-36 PMCID:PMC2532529

[94]

Blythe IM,Fernandez Odell JS,Bowring MA.Characterization and reactivity of copper(II) and copper(III) σ-aryl intermediates in aminoquinoline-directed C-H functionalization.J Am Chem Soc2023;145:18253-9

[95]

Wang Y,Sun W,Yao J.Identifying radical pathways for Cu(I)/Cu(II) relay catalyzed oxygenation via online coupled EPR/UV-Vis/near-IR monitoring.Adv Sci2024;11:e2402890 PMCID:PMC11304242

[96]

Wang M,Ma S,Li J.Cuproptosis: emerging biomarkers and potential therapeutics in cancers.Front Oncol2023;13:1288504 PMCID:PMC10662309

[97]

Harada M,Honma Y.Excess copper chelating therapy for Wilson disease induces anemia and liver dysfunction.Intern Med2011;50:1461-4

[98]

Shiono Y,Wakusawa S.Ultrastructural identification of iron and copper accumulation in the liver of a male patient with Wilson disease.Med Electron Microsc2001;34:54-60

[99]

Wang X,Zhang X.Ferulic acid activates SIRT1-mediated ferroptosis signaling pathway to improve cognition dysfunction in Wilson’s disease.Neuropsychiatr Dis Treat2023;19:2681-96 PMCID:PMC10710261

[100]

Pfeiffenberger J,Herrmann T.Iron metabolism and the role of HFE gene polymorphisms in Wilson disease.Liver Int2012;32:165-70

[101]

Symons MCR.Free radicals and iron: chemistry, biology, and medicine. Oxford, 1998; 2023.

[102]

Aruoma OI.Free radicals, oxidative stress, and antioxidants in human health and disease.J Am Oil Chem Soc1998;75:199-212 PMCID:PMC7101596

[103]

Kadiiska MB,Xiang QH.Iron supplementation generates hydroxyl radical in vivo. An ESR spin-trapping investigation.J Clin Invest1995;96:1653-7 PMCID:PMC185792

[104]

Gu J,Ruan J.From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death.Apoptosis2024;29:586-604

[105]

Zeng L,Yu G.Advances in research on immunocyte iron metabolism, ferroptosis, and their regulatory roles in autoimmune and autoinflammatory diseases.Cell Death Dis2024;15:481 PMCID:PMC11224426

[106]

Kim P,Thoröe-Boveleth S.Accurate measurement of copper overload in an experimental model of Wilson disease by laser ablation inductively coupled plasma mass spectrometry.Biomedicines2020;8:356 PMCID:PMC7555421

[107]

Boaru SG,Uerlings R.Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson’s disease.J Cell Mol Med2015;19:806-14 PMCID:PMC4395195

[108]

Teschke R.Advances in idiosyncratic drug-induced liver injury issues: new clinical and mechanistic analysis due to roussel uclaf causality assessment method use.Int J Mol Sci2023;24:10855 PMCID:PMC10341975

[109]

Yeong TT,Goubet S,Verma S.Natural history and outcomes in drug-induced autoimmune hepatitis.Hepatol Res2016;46:E79-88

[110]

Chung Y,Zen Y.Defining characteristics and long-term prognosis of drug-induced autoimmune-like hepatitis: a retrospective cohort study.United European Gastroenterol J2024;12:66-75 PMCID:PMC10859714

[111]

Martínez-Casas OY,Marín-Zuluaga JI.Differential characteristics in drug-induced autoimmune hepatitis.JGH Open2018;2:97-104 PMCID:PMC6207017

[112]

Weber S,Rotter I.Early ALT response to corticosteroid treatment distinguishes idiosyncratic drug-induced liver injury from autoimmune hepatitis.Liver Int2019;39:1906-17

[113]

Danan G.RUCAM in drug and herb induced liver injury: the update.Int J Mol Sci2015;17:14 PMCID:PMC4730261

[114]

Hennes EM, Zeniya M, Czaja AJ, et al; International Autoimmune Hepatitis Group. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology. 2008;48:169-76.

[115]

Nagral A,Matthai J.Wilson’s disease: clinical practice guidelines of the indian national association for study of the liver, the Indian society of pediatric gastroenterology, hepatology and nutrition, and the movement disorders society of India.J Clin Exp Hepatol2019;9:74-98 PMCID:PMC6363961

[116]

Nagral A, Sarma MS, Matthai J, et al. Corrigendum to “Wilson's disease: clinical practice guidelines of the Indian National Association for the Study of Liver (INASL), The Indian Society of Pediatric Gastroenterology, Hepatology and Nutrition (ISPGHAN) and the Movement Disorders Society of India (MDSI)” [J Clin Exp Hepatol 9 (2019) 74-98]. Available from: https://www.jcehepatology.com/article/S0973-6883(19)30286-5/fulltext. [Last accessed on 28 Jul 2025].

[117]

Satoh M,Ho LA.Prevalence and sociodemographic correlates of antinuclear antibodies in the United States.Arthritis Rheum2012;64:2319-27 PMCID:PMC3330150

[118]

Lee Y,Cho H.D-penicillamine-induced ANA (+) ANCA (+) vasculitis in pediatric patients with Wilson’s disease.Clin Nephrol2016;85:296-300

[119]

Gromadzka G,Krzemińska E,Litwin T.Wilson’s disease-crossroads of genetics, inflammation and immunity/autoimmunity: clinical and molecular issues.Int J Mol Sci2024;25:9034 PMCID:PMC11354778

[120]

Liu K,He Y,You H.Hepatic progenitor cells reprogrammed from mouse fibroblasts repopulate hepatocytes in Wilson’s disease mice.Stem Cell Res Ther2025;16:131 PMCID:PMC11899129

[121]

Stremmel W,Weiskirchen R.Clinical features of Wilson disease.Ann Transl Med2019;7:S61 PMCID:PMC6531660

[122]

Fuentealba IC.Animal models of copper-associated liver disease.Comp Hepatol2003;2:5 PMCID:PMC156612

[123]

Petruzzelli R,Crispino R.Prion protein promotes copper toxicity in Wilson disease.Nat Commun2025;16:1468 PMCID:PMC11807206

[124]

Vogel FS.The deposition of exogenous copper under experimental conditions with observations on its neurotoxic and nephrotoxic properties in relation to Wilson’s disease.J Exp Med1959;110:801-10 PMCID:PMC2137023

[125]

Zhao L,Wang F.Zebrafish in the sea of mineral (iron, zinc, and copper) metabolism.Front Pharmacol2014;5:33 PMCID:PMC3944790

[126]

Durack J.The gut microbiome: Relationships with disease and opportunities for therapy.J Exp Med2019;216:20-40 PMCID:PMC6314516

[127]

Teschke R,Liangpunsakul S.Alcoholic liver disease and the co-triggering role of MEOS with its CYP 2E1 catalytic cycle and ROS.Arch Gastroenterol Res2021;2:9-25

[128]

Parmanand B,Boland KJ.Systemic iron reduction by venesection alters the gut microbiome in patients with haemochromatosis.JHEP Rep2020;2:100154 PMCID:PMC7516344

[129]

Yilmaz B.Gut microbiota and iron: the crucial actors in health and disease.Pharmaceuticals2018;11:98 PMCID:PMC6315993

[130]

Wooton-Kee CR.Therapeutic implications of impaired nuclear receptor function and dysregulated metabolism in Wilson’s disease.Pharmacol Ther2023;251:108529 PMCID:PMC10841433

[131]

Frigo DE,Williams C.Nuclear receptors: from molecular mechanisms to therapeutics.Essays Biochem2021;65:847-56 PMCID:PMC8628184

[132]

Mazhar A.Updates on Wilson disease.Clin Liver Dis2023;22:117-21 PMCID:PMC10615495

[133]

Association for the Study of the Liver. EASL-ERN Clinical Practice Guidelines on Wilson’s disease.J Hepatol2025;Epub ahead of print:

[134]

Aboalam HS,El-Domiaty N.Challenges and recent advances in diagnosing Wilson disease.J Clin Exp Hepatol2025;15:102531 PMCID:PMC11952840

[135]

Lorenzen C,García-Solà C.Relative exchangeable copper, exchangeable copper and total copper in the diagnosis of Wilson disease.Liver Int2025;45:e70089 PMCID:PMC11977851

[136]

Jung S,Zhao L,Paulovich AG.Quantification of ATP7B protein in dried blood spots by peptide immuno-SRM as a potential screen for Wilson’s disease.J Proteome Res2017;16:862-71 PMCID:PMC5574172

[137]

Tao Z,Liu J.A clinical study showing the expression characteristics of cuproptosis markers in cases with Wilson disease.Medicine2024;103:e40598 PMCID:PMC11596713

[138]

Cai H,Wang XP.ATP7B gene therapy of autologous reprogrammed hepatocytes alleviates copper accumulation in a mouse model of Wilson’s disease.Hepatology2022;76:1046-57 PMCID:PMC9790736

[139]

Wei R,Cheng CW.CRISPR-targeted genome editing of human induced pluripotent stem cell-derived hepatocytes for the treatment of Wilson’s disease.JHEP Rep2022;4:100389 PMCID:PMC8633686

[140]

Hu HL,Duff-Canning S.Oxidative damage of copper chloride overload to the cultured rat astrocytes.Am J Transl Res2016;8:1273-80 PMCID:PMC4846971

AI Summary AI Mindmap
PDF

252

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/