Mechanobiology in the development and progression of nonalcoholic fatty liver disease: an updated review

Emilie K. Mitten , György Baffy

Metabolism and Target Organ Damage ›› 2023, Vol. 3 ›› Issue (1) : 2

PDF
Metabolism and Target Organ Damage ›› 2023, Vol. 3 ›› Issue (1) :2 DOI: 10.20517/mtod.2022.37
Review

Mechanobiology in the development and progression of nonalcoholic fatty liver disease: an updated review

Author information +
History +
PDF

Abstract

Mechanobiology is a rapidly emerging field focused on the biological impact of physical forces at the molecular, cellular, and tissue level. Living cells perceive mechanical cues and transform them into biochemical signals through mechanotransduction. Mechanotransduction is a complex process that involves mechanosensors (which are located in the plasma membrane or within the cell) and mechanotransmission to the nucleus (which occurs either by physical connection between the mechanosensor and the nucleus or by mechanosignaling through biochemical pathways). Essential biological functions, including development, growth, motility, and metabolism, depend on the mechanoresponses generated by these events. Multiple lines of evidence indicate that disruption of mechanical homeostasis may contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD), a highly prevalent metabolic disorder characterized by abnormal accumulation of lipid droplets in hepatocytes (steatosis) and often associated with inflammation and liver cell injury (steatohepatitis). While predicting individual predisposition to adverse outcomes in NAFLD remains a challenge, there is increasing evidence that steatosis and steatohepatitis trigger mechanoresponses that contribute to the early stages of pathogenesis in NAFLD and critically impact disease progression. Lipid accumulation and lipotoxicity modify liver viscoelasticity, alter the biomechanics of liver sinusoids, and initiate aberrant pathways of mechanotransduction in hepatocytes and non-parenchymal liver cells, such as sinusoidal endothelial cells and hepatic stellate cells. Interactions of these cells at mechanical interfaces with each other, with extracellular matrix, and with sinusoidal blood flow are profoundly altered by steatosis and steatohepatitis; such changes may promote a pro-angiogenic and pro-fibrotic milieu. A better understanding of liver mechanobiology may facilitate the identification of novel molecular and cellular targets in the management of NAFLD.

Highlights

● Cellular and molecular behavior is regulated by a variety of physical forces;

● Viscoelastic properties of the liver are altered in nonalcoholic fatty liver disease (NAFLD);

● Sinusoidal hemostasis is disrupted by early functional and structural changes in NAFLD;

● Mechanical cues are likely to contribute to all aspects of NAFLD pathogenesis.

Keywords

Steatosis / steatohepatitis / lipid droplets / viscoelasticity / biomechanics / mechanotransduction / mechanosignaling

Cite this article

Download citation ▾
Emilie K. Mitten, György Baffy. Mechanobiology in the development and progression of nonalcoholic fatty liver disease: an updated review. Metabolism and Target Organ Damage, 2023, 3(1): 2 DOI:10.20517/mtod.2022.37

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iskratsch T,Sheetz MP.Appreciating force and shape-the rise of mechanotransduction in cell biology.Nat Rev Mol Cell Biol2014;15:825-33 PMCID:PMC9339222

[2]

Mammoto T.Mechanical control of tissue and organ development.Development2010;137:1407-20 PMCID:PMC2853843

[3]

Wells RG.Tissue mechanics and fibrosis.Biochim Biophys Acta2013;1832:884-90 PMCID:PMC3641165

[4]

Discher DE,Wang YL.Tissue cells feel and respond to the stiffness of their substrate.Science2005;310:1139-43

[5]

DuFort CC,Weaver VM.Balancing forces: architectural control of mechanotransduction.Nat Rev Mol Cell Biol2011;12:308-19 PMCID:PMC3564968

[6]

Humphrey JD,Schwartz MA.Mechanotransduction and extracellular matrix homeostasis.Nat Rev Mol Cell Biol2014;15:802-12 PMCID:PMC4513363

[7]

Tanaka K,Timalsina S.Early events in endothelial flow sensing.Cytoskeleton (Hoboken)2021;78:217-31

[8]

Wang N,Ingber DE.Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus.Nat Rev Mol Cell Biol2009;10:75-82

[9]

Belaadi N,Guilluy C.Under pressure: mechanical stress management in the nucleus.Cells2016;5:27 PMCID:PMC4931676

[10]

Powell EE,Rinella M.nonalcoholic fatty liver disease.Lancet2021;397:2212-24

[11]

Lemaigre FP.Mechanical stimuli control liver homeostasis.J Hepatol2019;71:12-3

[12]

Kang N.Mechanotransduction in liver diseases.Semin Liver Dis2020;40:84-90 PMCID:PMC6992517

[13]

Mashek DG.Hepatic lipid droplets: a balancing act between energy storage and metabolic dysfunction in NAFLD.Mol Metab2021;50:101115 PMCID:PMC8324678

[14]

Scorletti E.A new perspective on NAFLD: focusing on lipid droplets.J Hepatol2022;76:934-45

[15]

Seebacher F,Kory N.Hepatic lipid droplet homeostasis and fatty liver disease.Semin Cell Dev Biol2020;108:72-81

[16]

DeLeve LD.Liver sinusoidal endothelial cells in hepatic fibrosis.Hepatology2015;61:1740-6 PMCID:PMC4333127

[17]

Hammoutene A.Role of liver sinusoidal endothelial cells in nonalcoholic fatty liver disease.J Hepatol2019;70:1278-91

[18]

Long Y,Liang K.Mechanical communication in fibrosis progression.Trends Cell Biol2022;32:70-90

[19]

Ma H,Zhang M.Liver sinusoidal endothelial cells are implicated in multiple fibrotic mechanisms.Mol Biol Rep2021;48:2803-15

[20]

Zhu C,Schwabe RF.Maladaptive regeneration - the reawakening of developmental pathways in NASH and fibrosis.Nat Rev Gastroenterol Hepatol2021;18:131-42 PMCID:PMC7854502

[21]

Chen G,Fu Q.Matrix mechanics as regulatory factors and therapeutic targets in hepatic fibrosis.Int J Biol Sci2019;15:2509-21 PMCID:PMC6854372

[22]

Park S. Mechanics of biological systems. In. Introduction to mechanobiology and experimental techniques: Morgan & Claypool Publishers; 2019. Available from: https://iopscience.iop.org/book/mono/978-1-64327-392-1.pdf [Last accessed on 16 Mar 2023]

[23]

Verdier C,Duperray A.Review: rheological properties of biological materials.Comptes Rendus Physique2009;10:790-811

[24]

Park S,Pittman M,Chen Y.The effects of stiffness, fluid viscosity, and geometry of microenvironment in homeostasis, aging, and diseases: a brief review.J Biomech Eng2020;142 PMCID:PMC7477718

[25]

Charrier EE,Wells RG.Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation.Nat Commun2018;9:449 PMCID:PMC5792430

[26]

Wells RG.The role of matrix stiffness in regulating cell behavior.Hepatology2008;47:1394-400

[27]

Vollmar B.The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair.Physiol Rev2009;89:1269-339

[28]

Poisson J,Boulanger C.Liver sinusoidal endothelial cells: Physiology and role in liver diseases.J Hepatol2017;66:212-27

[29]

Mönkemöller V,Hübner W,McCourt P.Multimodal super-resolution optical microscopy visualizes the close connection between membrane and the cytoskeleton in liver sinusoidal endothelial cell fenestrations.Sci Rep2015;5:16279 PMCID:PMC4637861

[30]

Friedman SL.Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver.Physiol Rev2008;88:125-72 PMCID:PMC2888531

[31]

Baffy G.Kupffer cells in nonalcoholic fatty liver disease: the emerging view.J Hepatol2009;51:212-23 PMCID:PMC2694233

[32]

Cromar GL,Chautard E,Parkinson J.Toward a systems level view of the ECM and related proteins: a framework for the systematic definition and analysis of biological systems.Proteins2012;80:1522-44

[33]

Duscher D,Wong VW.Mechanotransduction and fibrosis.J Biomech2014;47:1997-2005 PMCID:PMC4425300

[34]

Bedossa P.Liver extracellular matrix in health and disease.J Pathol2003;200:504-15

[35]

Gong Z,Caliari SR.Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates.Proc Natl Acad Sci USA2018;115:E2686-95 PMCID:PMC5866566

[36]

Petzold G.Role of ultrasound methods for the assessment of NAFLD.J Clin Med2022;11:4581 PMCID:PMC9369745

[37]

Tamaki N,Huang DQ.Noninvasive assessment of liver fibrosis and its clinical significance in nonalcoholic fatty liver disease.Hepatol Res2022;52:497-507 PMCID:PMC9718363

[38]

Sharma AK,Oppenheimer DC.Attenuation of shear waves in normal and steatotic livers.Ultrasound Med Biol2019;45:895-901

[39]

Sugimoto K,Oshiro H.Clinical utilization of shear wave dispersion imaging in diffuse liver disease.Ultrasonography2020;39:3-10 PMCID:PMC6920618

[40]

Karlas T,Sasso M.Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis.J Hepatol2017;66:1022-30

[41]

Poul SS.Fat and fibrosis as confounding cofactors in viscoelastic measurements of the liver.Phys Med Biol2021;66:045024 PMCID:PMC8064273

[42]

Pearson A,d’Alteroche L.Vibration-controlled transient elastography for noninvasive evaluation of liver steatosis.Med Phys2022;49:1507-21 PMCID:PMC9401907

[43]

Parker KJ.The quantification of liver fat from wave speed and attenuation.Phys Med Biol2021;66:145011

[44]

Shoham N.Mechanotransduction in adipocytes.J Biomech2012;45:1-8

[45]

Shoham N,Katzengold R,Benayahu D.Adipocyte stiffness increases with accumulation of lipid droplets.Biophys J2014;106:1421-31 PMCID:PMC3984981

[46]

Sahini N.Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes.Prog Lipid Res2014;54:86-112

[47]

Ijaz S,Winslet MC.Impairment of hepatic microcirculation in fatty liver.Microcirculation2003;10:447-56

[48]

Wada K,Fujikawa Y,Mitsui H.Sinusoidal stenosis as the cause of portal hypertension in choline deficient diet induced fatty cirrhosis of the rat liver.Acta Pathol Jpn1974;24:207-17

[49]

Yoshihara H,Eguchi H.Hepatic microcirculatory disturbance in fatty liver as a cause of portal hypertension.J Gastroenterol Hepatol1989;4 Suppl 1:279-81

[50]

Gluchowski NL,Walther TC.Lipid droplets and liver disease: from basic biology to clinical implications.Nat Rev Gastroenterol Hepatol2017;14:343-55 PMCID:PMC6319657

[51]

Faulkner CS,Shah VH.A single nucleotide polymorphism of PLIN2 is associated with nonalcoholic steatohepatitis and causes phenotypic changes in hepatocyte lipid droplets: a pilot study.Biochim Biophys Acta Mol Cell Biol Lipids2020;1865:158637 PMCID:PMC8108536

[52]

Romero LM,Cyr NE.The Reactive Scope Model - a new model integrating homeostasis, allostasis, and stress.Horm Behav2009;55:375-89

[53]

Liu YL,Burt AD.TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with nonalcoholic fatty liver disease.Nat Commun2014;5:4309 PMCID:PMC4279183

[54]

Li R,Yang C.Effects of lipid deposition on viscoelastic response in human hepatic cell line HepG2.Front Physiol2021;12:684121 PMCID:PMC8440969

[55]

Baldini F,Ardito M.Biomechanics of cultured hepatic cells during different steatogenic hits.J Mech Behav Biomed Mater2019;97:296-305

[56]

Zhang X,Zhang P.Dynamic mechanical analysis to assess viscoelasticity of liver tissue in a rat model of nonalcoholic fatty liver disease.Med Eng Phys2017;44:79-86

[57]

Parker KJ.A microchannel flow model for soft tissue elasticity.Phys Med Biol2014;59:4443-57

[58]

Parker KJ,Drage MG,Hah Z.The biomechanics of simple steatosis and steatohepatitis.Phys Med Biol2018;63:105013

[59]

Caldwell S,Dias D.Hepatocellular ballooning in NASH.J Hepatol2010;53:719-23 PMCID:PMC2930100

[60]

Ogawa S,Yoshida K.Relationship between liver tissue stiffness and histopathological findings analyzed by shear wave elastography and compression testing in rats with nonalcoholic steatohepatitis.J Med Ultrason (2001)2016;43:355-60

[61]

Seifalian AM,Agarwal A.The effect of graded steatosis on flow in the hepatic parenchymal microcirculation.Transplantation1999;68:780-4

[62]

Balci A,Sumbas H,Egilmez E.Effects of diffuse fatty infiltration of the liver on portal vein flow hemodynamics.J Clin Ultrasound2008;36:134-40

[63]

Li N,Zhou J.Multiscale biomechanics and mechanotransduction from liver fibrosis to cancer.Adv Drug Deliv Rev2022;188:114448

[64]

Francque S,Mertens I.Noncirrhotic human nonalcoholic fatty liver disease induces portal hypertension in relation to the histological degree of steatosis.Eur J Gastroenterol Hepatol2010;22:1449-57

[65]

Pasarín M,Gracia-Sancho J.Sinusoidal endothelial dysfunction precedes inflammation and fibrosis in a model of NAFLD.PLoS One2012;7:e32785 PMCID:PMC3317918

[66]

Miyao M,Ishida T.Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression.Lab Invest2015;95:1130-44

[67]

Schaffner F.Capillarization of hepatic sinusoids in man.Gastroenterology1963;44:239-42

[68]

Shah V,Garcia-Cardena G.Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids.J Clin Invest1997;100:2923-30 PMCID:PMC508500

[69]

Francque S,Verbeke L.Increased intrahepatic resistance in severe steatosis: endothelial dysfunction, vasoconstrictor overproduction and altered microvascular architecture.Lab Invest2012;92:1428-39

[70]

Hilscher MB,Arab JP.Mechanical stretch increases expression of cxcl1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension.Gastroenterology2019;157:193-209.e9 PMCID:PMC6581607

[71]

Wisse E,Shami GJ.Fat causes necrosis and inflammation in parenchymal cells in human steatotic liver.Histochem Cell Biol2022;157:27-38 PMCID:PMC8755686

[72]

Labernadie A.Sticking, steering, squeezing and shearing: cell movements driven by heterotypic mechanical forces.Curr Opin Cell Biol2018;54:57-65

[73]

Lim CG,Kim C.Cellular machinery for sensing mechanical force.BMB Rep2018;51:623-9 PMCID:PMC6330935

[74]

Vogel V.Local force and geometry sensing regulate cell functions.Nat Rev Mol Cell Biol2006;7:265-75

[75]

Weis K.Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle.Cell2003;112:441-51

[76]

Chatterjee S.Endothelial mechanotransduction, redox signaling and the regulation of vascular inflammatory pathways.Front Physiol2018;9:524 PMCID:PMC5999754

[77]

Davies PF.Flow-mediated endothelial mechanotransduction.Physiol Rev1995;75:519-60 PMCID:PMC3053532

[78]

Sun X.New aspects of hepatic endothelial cells in physiology and nonalcoholic fatty liver disease.Am J Physiol Cell Physiol2020;318:C1200-13 PMCID:PMC7311747

[79]

Angulo-Urarte A,Huveneers S.Cell-cell junctions as sensors and transducers of mechanical forces.Biochim Biophys Acta Biomembr2020;1862:183316

[80]

Zamir E.Molecular complexity and dynamics of cell-matrix adhesions.J Cell Sci2001;114:3583-90

[81]

Wang Y,Miao H,Usami S.Integrins regulate VE-cadherin and catenins: dependence of this regulation on Src, but not on Ras.Proc Natl Acad Sci USA2006;103:1774-9

[82]

Rooij J, Kerstens A, Danuser G, Schwartz MA, Waterman-Storer CM. Integrin-dependent actomyosin contraction regulates epithelial cell scattering.J Cell Biol2005;171:153-64 PMCID:PMC2171213

[83]

Zuidema A,Sonnenberg A.Crosstalk between cell adhesion complexes in regulation of mechanotransduction.Bioessays2020;42:e2000119

[84]

Sosa BA,Kutay U.LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins.Cell2012;149:1035-47 PMCID:PMC3383001

[85]

Guilluy C,Van Landeghem L.Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus.Nat Cell Biol2014;16:376-81 PMCID:PMC4085695

[86]

Matsuda A.On the nuclear pore complex and its emerging role in cellular mechanotransduction.APL Bioeng2022;6:011504 PMCID:PMC8916845

[87]

Dupont S,Aragona M.Role of YAP/TAZ in mechanotransduction.Nature2011;474:179-83

[88]

Halder G,Piccolo S.Transduction of mechanical and cytoskeletal cues by YAP and TAZ.Nat Rev Mol Cell Biol2012;13:591-600

[89]

Yu FX,Guan KL.Hippo pathway in organ size control, tissue homeostasis, and cancer.Cell2015;163:811-28 PMCID:PMC4638384

[90]

Mo JS,Gong R,Guan KL.Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs).Genes Dev2012;26:2138-43 PMCID:PMC3465735

[91]

Zanconato F,Piccolo S.YAP/TAZ at the roots of cancer.Cancer Cell2016;29:783-803 PMCID:PMC6186419

[92]

Pocaterra A,Dupont S.YAP/TAZ functions and their regulation at a glance.J Cell Sci2020;133:jcs230425

[93]

Martino F,Vinarský V,Forte G.Cellular mechanotransduction: from tension to function.Front Physiol2018;9:824 PMCID:PMC6041413

[94]

Desai SS,Zhou VX.Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha.Hepatology2016;64:261-75 PMCID:PMC5224931

[95]

Greuter T,Gan C.Mechanotransduction-induced glycolysis epigenetically regulates a CXCL1-dominant angiocrine signaling program in liver sinusoidal endothelial cells in vitro and in vivo.J Hepatol2022;77:723-34 PMCID:PMC9391258

[96]

Urushima H,Matsubara T.Activation of hepatic stellate cells requires dissociation of e-cadherin-containing adherens junctions with hepatocytes.Am J Pathol2021;191:438-53 PMCID:PMC7919856

[97]

Li W,Li N.Matrix stiffness and shear stresses modulate hepatocyte functions in a fibrotic liver sinusoidal model.Am J Physiol Gastrointest Liver Physiol2021;320:G272-82 PMCID:PMC8609567

[98]

Song Z,Ng IC,Yang YA.Mechanosensing in liver regeneration.Semin Cell Dev Biol2017;71:153-67

[99]

Ishikawa J,Iwadate A.Mechanical homeostasis of liver sinusoid is involved in the initiation and termination of liver regeneration.Commun Biol2021;4:409 PMCID:PMC8027462

[100]

Mitten EK.Mechanotransduction in the pathogenesis of nonalcoholic fatty liver disease.J Hepatol2022;77:1642-56

[101]

Van der Graaff D,Couturier FJ.Severe steatosis induces portal hypertension by systemic arterial hyporeactivity and hepatic vasoconstrictor hyperreactivity in rats.Lab Invest2018;98:1263-75

[102]

García-Lezana T,Bravo M.Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis.Hepatology2018;67:1485-98

[103]

Bosch J.The portal hypertension syndrome: etiology, classification, relevance, and animal models.Hepatol Int2018;12:1-10

[104]

Puoti C.Steatosis and portal hypertension.Eur Rev Med Pharmacol Sci2005;9:285-90

[105]

Mueller S.Does pressure cause liver cirrhosis?.World J Gastroenterol2016;22:10482-501 PMCID:PMC5192260

[106]

Baffy G.Overlooked subclinical portal hypertension in non-cirrhotic NAFLD: Is it real and how to measure it?.J Hepatol2022;76:458-63

[107]

Tsushima Y.Spleen enlargement in patients with nonalcoholic fatty liver: correlation between degree of fatty infiltration in liver and size of spleen.Dig Dis Sci2000;45:196-200

[108]

Tarantino G,Balsano C.Liver-spleen axis in nonalcoholic fatty liver disease.Expert Rev Gastroenterol Hepatol2021;15:759-69

[109]

Mendes FD,Sanderson SO,Angulo P.Prevalence and indicators of portal hypertension in patients with nonalcoholic fatty liver disease.Clin Gastroenterol Hepatol2012;10:1028-33.e2 PMCID:PMC3424335

[110]

Rodrigues SG,Guixé-Muntet S,Berzigotti A.Patients with signs of advanced liver disease and clinically significant portal hypertension do not necessarily have cirrhosis.Clin Gastroenterol Hepatol2019;17:2101-2109.e1

[111]

Lei L,Housset C,Lemoinne S.Role of angiogenesis in the pathogenesis of NAFLD.J Clin Med2021;10:1338 PMCID:PMC8037441

[112]

Coulon S,Colle I.Evaluation of inflammatory and angiogenic factors in patients with nonalcoholic fatty liver disease.Cytokine2012;59:442-9

[113]

Coulon S,Heindryckx F.Role of vascular endothelial growth factor in the pathophysiology of nonalcoholic steatohepatitis in two rodent models.Hepatology2013;57:1793-805

[114]

Lorenz L,Buschmann T.Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival.Nature2018;562:128-32

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/