Arresting type 1 diabetes: are we there yet? Obstacles and opportunities

Chantal Mathieu , Pieter-Jan Martens

Metabolism and Target Organ Damage ›› 2022, Vol. 2 ›› Issue (4) : 15

PDF
Metabolism and Target Organ Damage ›› 2022, Vol. 2 ›› Issue (4) :15 DOI: 10.20517/mtod.2022.16
Review

Arresting type 1 diabetes: are we there yet? Obstacles and opportunities

Author information +
History +
PDF

Abstract

More than 100 years after the discovery of insulin, the exact etiology and pathophysiology of type 1 diabetes (T1D) remains elusive, but our knowledge is growing. This leads to louder calls to initiate a risk screening for T1D in the general population. This risk screening could be based on the genetic risk (in the general population or targeted HLA genotyping in family members of persons with T1D) or on the screening for autoantibodies in blood (e.g., antibodies against insulin, GAD, IA2, or ZnT8). The presence of autoantibodies is known to convey a clearly increased risk of progressing to T1D, particularly when two or more antibody types are present. It remains a point of discussion whether screening efforts are cost-effective. At present, in the absence of interventions capable of delaying the onset of disease, the only benefit of screening is the earlier diagnosis of T1D, thus avoiding life-threatening diabetic ketoacidosis (DKA). Nevertheless, large consortia (e.g., INNODIA and TrialNet) are currently focusing on not only disease biomarkers but also biomarkers of therapeutic effect of interventions. All hope is thus focused on the arrival of intervention strategies that could arrest the ongoing immune destruction of the beta cell and thus delay clinical disease onset. Thus far, attempts have focused on either protecting the beta cell or arresting the immune response, but the future seems to be one of combination therapy. Here, we perform a scoping review on the pathogenesis of T1D, discuss screening strategies, and present promising intervention strategies.

Keywords

Type 1 diabetes / prevention / intervention / cure

Cite this article

Download citation ▾
Chantal Mathieu, Pieter-Jan Martens. Arresting type 1 diabetes: are we there yet? Obstacles and opportunities. Metabolism and Target Organ Damage, 2022, 2(4): 15 DOI:10.20517/mtod.2022.16

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atkinson MA.Type 1 diabetes: new perspectives on disease pathogenesis and treatment.Lancet2001;358:221-9

[2]

Eisenbarth GS.Type I diabetes mellitus. A chronic autoimmune disease.N Engl J Med1986;314:1360-8

[3]

Atkinson MA,Eisenbarth GS.How does type 1 diabetes develop?: the notion of homicide or β-cell suicide revisited.Diabetes2011;60:1370-9 PMCID:PMC3292309

[4]

Bakay M,Grant SFA.The genetic contribution to type 1 diabetes.Curr Diab Rep2019;19:116

[5]

Santin I.Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β-cell apoptosis.Diabetes Obes Metab2013;15 Suppl 3:71-81

[6]

Pociot F.Genetic risk factors for type 1 diabetes.Lancet2016;387:2331-9

[7]

Milluzzo A,Brozzetti A.Risk for coexistent autoimmune diseases in familial and sporadic type 1 diabetes is related to age at diabetes onset.Endocr Pract2021;27:110-7

[8]

Skyler JS,Bonifacio E.Differentiation of diabetes by pathophysiology, natural history, and prognosis.Diabetes2017;66:241-55 PMCID:PMC5384660

[9]

Winkler C,Heigermoser M.GPPAD Study GroupIdentification of infants with increased type 1 diabetes genetic risk for enrollment into Primary Prevention Trials-GPPAD-02 study design and first results.Pediatr Diabetes2019;20:720-7 PMCID:PMC6851563

[10]

Ziegler AG,Simell O.Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children.JAMA2013;309:2473-9 PMCID:PMC4878912

[11]

Bonifacio E.Predicting type 1 diabetes using biomarkers.Diabetes Care2015;38:989-96

[12]

Pugliese A.Insulitis in the pathogenesis of type 1 diabetes.Pediatr Diabetes2016;17 Suppl 22:31-6 PMCID:PMC4948864

[13]

De Leenheer E, Wong FS. Adoptive transfer of autoimmune diabetes using immunodeficient Nonobese Diabetic (NOD) mice. In: Gillespie KM, editor. Type-1 Diabetes. New York: Springer; 2016. pp. 135-40.

[14]

Burrack AL,Fife BT.T cell-mediated beta cell destruction: autoimmunity and alloimmunity in the context of type 1 diabetes.Front Endocrinol (Lausanne)2017;8:343 PMCID:PMC5723426

[15]

Virostko J,Hilmes M.Pancreas volume declines during the first year after diagnosis of type 1 diabetes and exhibits altered diffusion at disease onset.Diabetes Care2019;42:248-57 PMCID:PMC6341292

[16]

Campbell-Thompson ML,Grajo JR.Relative pancreas volume is reduced in first-degree relatives of patients with type 1 diabetes.Diabetes Care2019;42:281-7 PMCID:PMC6341284

[17]

Wasserfall C,Campbell-Thompson M.Persistence of pancreatic insulin mRNA expression and proinsulin protein in type 1 diabetes pancreata.Cell Metab2017;26:568-575.e3 PMCID:PMC5679224

[18]

Rodriguez-Calvo T,Amirian N.Increase in pancreatic proinsulin and preservation of β-cell mass in autoantibody-positive donors prior to type 1 diabetes onset.Diabetes2017;66:1334-45 PMCID:PMC5399615

[19]

Eizirik DL,Cardozo AK.Signalling danger: endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation.Diabetologia2013;56:234-41

[20]

Thomaidou S,van der Slik A.β-cell stress shapes CTL immune recognition of preproinsulin signal peptide by posttranscriptional regulation of endoplasmic reticulum aminopeptidase 1.Diabetes2020;69:670-80

[21]

Cardozo AK,Gysemans C,Mathieu C.IL-1beta and IFN-gamma induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice.Diabetologia2003;46:255-66

[22]

Richardson SJ,Gerling IC.Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes.Diabetologia2016;59:2448-58 PMCID:PMC5042874

[23]

Peters L,Brusko TM.Islet-immune interactions in type 1 diabetes: the nexus of beta cell destruction.Clin Exp Immunol2019;198:326-40 PMCID:PMC6857082

[24]

Kracht MJL,Roep BO.Neoantigens and microenvironment in type 1 diabetes: lessons from antitumor immunity.Trends Endocrinol Metab2016;27:353-62

[25]

Roep BO,van Lummel M.A roadmap of the generation of neoantigens as targets of the immune system in type 1 diabetes.Curr Opin Immunol2016;43:67-73

[26]

Martens PJ,Mathieu C.100 YEARS OF INSULIN: arresting or curing type 1 diabetes: an elusive goal, but closing the gap.J Endocrinol2021;249:T1-T11

[27]

Primavera M,Chiarelli F.Prediction and prevention of type 1 diabetes.Front Endocrinol (Lausanne)2020;11:248 PMCID:PMC7326081

[28]

Bonifacio E.Birth and coming of age of islet autoantibodies.Clin Exp Immunol2019;198:294-305 PMCID:PMC6857083

[29]

Vehik K,Lernmark Å.TEDDY Study GroupHierarchical order of distinct autoantibody spreading and progression to type 1 diabetes in the TEDDY study.Diabetes Care2020;43:2066-73 PMCID:PMC7440899

[30]

Ghalwash M,Lundgren M.Two-age islet-autoantibody screening for childhood type 1 diabetes: a prospective cohort study.Lancet Diabetes Endocrinol2022;10:589-96

[31]

Insel RA,Atkinson MA.Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association.Diabetes Care2015;38:1964-74 PMCID:PMC5321245

[32]

Mathieu C.Are We There Yet? Finding ways to work together on T1D.Diabetes Care2018;41:667-9

[33]

Flores C,Moura IC,Hermine O.Lessons to learn from low-dose cyclosporin-A: a new approach for unexpected clinical applications.Front Immunol2019;10:588 PMCID:PMC6447662

[34]

Jacobsen LM,Greco MN.Comparing beta cell preservation across clinical trials in recent-onset type 1 diabetes.Diabetes Technol Ther2020;22:948-53 PMCID:PMC7757538

[35]

Gitelman SE,Felner EI.ITN START Study TeamAntithymocyte globulin therapy for patients with recent-onset type 1 diabetes: 2 year results of a randomised trial.Diabetologia2016;59:1153-61 PMCID:PMC4869699

[36]

Haller MJ,Blanchfield JL.Type 1 Diabetes TrialNet ATG-GCSF Study GroupLow-dose anti-thymocyte globulin preserves C-peptide, reduces HbA1c, and increases regulatory to conventional T-cell ratios in new-onset type 1 diabetes: two-year clinical trial data.Diabetes2019;68:1267-76 PMCID:PMC6610026

[37]

Haller MJ,Skyler JS.Type 1 Diabetes TrialNet ATG-GCSF Study GroupLow-dose Anti-Thymocyte Globulin (ATG) preserves β-cell function and improves HbA1c in new-onset type 1 diabetes.Diabetes Care2018;41:1917-25 PMCID:PMC6105329

[38]

Lu Y,Guillioli M,Chen Z.Induction of self-antigen-specific Foxp3+ regulatory T cells in the periphery by lymphodepletion treatment with anti-mouse thymocyte globulin in mice.Immunology2011;134:50-9 PMCID:PMC3173694

[39]

Herold KC,Auger JA.Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus.N Engl J Med2002;346:1692-8

[40]

Keymeulen B,Ziegler AG.Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes.N Engl J Med2005;352:2598-608

[41]

Chatenoud L.A future for CD3 antibodies in immunotherapy of type 1 diabetes.Diabetologia2019;62:578-81

[42]

Aronson R,Christiansen JS.DEFEND Investigator GroupLow-dose otelixizumab anti-CD3 monoclonal antibody DEFEND-1 study: results of the randomized phase III study in recent-onset human type 1 diabetes.Diabetes Care2014;37:2746-54 PMCID:PMC4392937

[43]

Ambery P,Biswas N,Parkin J.Efficacy and safety of low-dose otelixizumab anti-CD3 monoclonal antibody in preserving C-peptide secretion in adolescent type 1 diabetes: DEFEND-2, a randomized, placebo-controlled, double-blind, multi-centre study.Diabet Med2014;31:399-402

[44]

Sherry N,Ludvigsson J.Teplizumab for treatment of type 1 diabetes (Protégé study): 1-year results from a randomised, placebo-controlled trial.Lancet2011;378:487-97 PMCID:PMC3191495

[45]

Hagopian W,Sherry N.Protégé Trial InvestigatorsTeplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protégé trial.Diabetes2013;62:3901-8 PMCID:PMC3806608

[46]

Perdigoto AL,Clark P.Immune Tolerance NetworkTreatment of type 1 diabetes with teplizumab: clinical and immunological follow-up after 7 years from diagnosis.Diabetologia2019;62:655-64 PMCID:PMC6402971

[47]

Herold KC,Long SA.Type 1 Diabetes TrialNet Study GroupAn anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes.N Engl J Med2019;381:603-13 PMCID:PMC6776880

[48]

Sims EK,Stier K.Type 1 Diabetes TrialNet Study GroupTeplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals.Sci Transl Med2021;13:eabc8980 PMCID:PMC8610022

[49]

Donath MY,Mandrup-Poulsen T.Targeting innate immune mediators in type 1 and type 2 diabetes.Nat Rev Immunol2019;19:734-46

[50]

Quattrin T,Steck AK.T1GER Study InvestigatorsGolimumab and beta-cell function in youth with new-onset type 1 diabetes.N Engl J Med2020;383:2007-17

[51]

Ludvigsson J.Autoantigen treatment in type 1 diabetes: unsolved questions on how to select autoantigen and administration route.Int J Mol Sci2020;21:1598 PMCID:PMC7084272

[52]

Mathieu C. AG019 ActoBiotics as monotherapy or in association with teplizumab in recent-onset type 1 diabetes was safe and demonstrated encouraging metabolic and immunological effects. Abstract at EASD 57th Annual meeting. 2021. Available from: https://investors.precigen.com/events/event-details/european-association-study-diabetes-easd-57th-annual-meeting/ [Last accessed on 15 Sep 2022]

[53]

Takiishi T,Korf H.Reversal of diabetes in NOD mice by clinical-grade proinsulin and IL-10-secreting lactococcus lactis in combination with low-dose anti-CD3 depends on the induction of Foxp3-positive T cells.Diabetes2017;66:448-59

[54]

Cook DP,Martens PJ.Intestinal delivery of proinsulin and IL-10 via lactococcus lactis combined with low-dose anti-CD3 restores tolerance outside the window of acute type 1 diabetes diagnosis.Front Immunol2020;11:1103 PMCID:PMC7295939

[55]

Tavira B,Wahlberg J,Ludvigsson J.Intralymphatic glutamic acid decarboxylase-alum administration induced Th2-like-specific immunomodulation in responder patients: a pilot clinical trial in type 1 diabetes.J Diabetes Res2018;2018:9391845 PMCID:PMC5994289

[56]

von Herrath M,Bode B.Anti-interleukin-21 antibody and liraglutide for the preservation of β-cell function in adults with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled, phase 2 trial.Lancet Diabetes Endocrinol2021;9:212-24

[57]

Shoda LK,Ramanujan S.A comprehensive review of interventions in the NOD mouse and implications for translation.Immunity2005;23:115-26

[58]

Feutren G,Karsenty G.Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset.Lancet1986;328:119-24

[59]

Pescovitz MD,Krause-Steinrauf H.Type 1 Diabetes TrialNet Anti-CD20 Study GroupRituximab, B-lymphocyte depletion, and preservation of beta-cell function.N Engl J Med2009;361:2143-52 PMCID:PMC6410357

[60]

Gottlieb PA,Krause-Steinrauf H.Type 1 Diabetes TrialNet MMF/DZB Study GroupFailure to preserve beta-cell function with mycophenolate mofetil and daclizumab combined therapy in patients with new- onset type 1 diabetes.Diabetes Care2010;33:826-32 PMCID:PMC2845036

[61]

Orban T,Becker DJ.Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial.Lancet2011;378:412-9 PMCID:PMC3462593

[62]

Herold KC,Ehlers MR.AbATE Study TeamTeplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders.Diabetes2013;62:3766-74 PMCID:PMC3806618

[63]

Rigby MR,Rendell MS.Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial.Lancet Diabetes Endocrinol2013;1:284-94 PMCID:PMC3957186

[64]

Piemonti L,Gillard P.Ladarixin, an inhibitor of the interleukin-8 receptors CXCR1 and CXCR2, in new-onset type 1 diabetes: a multicentre, randomized, double-blind, placebo-controlled trial.Diabetes Obes Metab2022;24:1840-9

[65]

Prevention Trial--Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus.N Engl J Med2002;346:1685-91

[66]

Skyler JS,Wolfsdorf J.Effects of oral insulin in relatives of patients with type 1 diabetes: the diabetes prevention trial--type 1.Diabetes Care2005;28:1068-76

[67]

Näntö-salonen K,Simell S.Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial.Lancet2008;372:1746-55

[68]

Bonifacio E,Klingensmith G.Pre-POINT Study GroupEffects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the Pre-POINT randomized clinical trial.JAMA2015;313:1541-9

[69]

Krischer JP,Bundy B,Greenbaum CJ.Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study GroupEffect of oral insulin on prevention of diabetes in relatives of patients with type 1 diabetes: a randomized clinical trial.JAMA2017;318:1891-902 PMCID:PMC5798455

[70]

Larsson H, Lundgren M, Jonsdottir B, Cuthbertson D, Krischer J; DiAPREV-IT Study Group. Safety and efficacy of autoantigen-specific therapy with 2 doses of alum-formulated glutamate decarboxylase in children with multiple islet autoantibodies and risk for type 1 diabetes: a randomized clinical trial.Pediatr Diabetes2018;19:410-9

[71]

Assfalg R,Hoffman KL.Oral insulin immunotherapy in children at risk for type 1 diabetes in a randomised controlled trial.Diabetologia2021;64:1079-92 PMCID:PMC8012335

[72]

Ludvigsson J,Pelikanova T.Intralymphatic glutamic acid decarboxylase with vitamin D supplementation in recent-onset type 1 diabetes: a double-blind, randomized, placebo-controlled phase IIb trial.Diabetes Care2021;44:1604-12 PMCID:PMC8323180

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/