Risk of cardio-nephro-metabolic disease from NAFLD to MAFLD: fact or fiction?
Ramzi Hassouneh , Mohammad Shadab Siddiqui , Chandra Bhati
Metabolism and Target Organ Damage ›› 2021, Vol. 1 ›› Issue (2) : 4
Risk of cardio-nephro-metabolic disease from NAFLD to MAFLD: fact or fiction?
Nonalcoholic fatty liver disease (NAFLD) is emerging as the most common etiology for chronic liver disease. Despite this, our understanding of this illness is lacking. The previous paradigm is that central adiposity, hyperlipidemia, hypertension, and insulin resistance, also known as metabolic syndrome, lead to NAFLD, and this relationship is unidirectional. However, recent evidence clearly shows that the clinical burden of this illness extends well beyond liver-related morbidity and mortality and is associated with multiple extrahepatic complications, particularly metabolic consequences. Due to this, the professional consensus has proposed using the term metabolic associated fatty liver disease (MAFLD) to more accurately reflect pathogenesis and help in patient stratification for management. This review discusses the shared pathophysiological mechanisms that link these diseases and how this can be leveraged to prevent these complications in individuals with NAFLD/MAFLD.
Nonalcoholic fatty liver disease / metabolic associated fatty liver disease / cardiovascular disease / diabetes / insulin resistance / chronic kidney disease
| [1] |
|
| [2] |
Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease.J Hepatol2016;64:1388-402 |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
Morris E, Fletcher JA, Thyfault JP, Rector RS. The role of angiotensin II in nonalcoholic steatohepatitis.Mol Cell Endocrinol2013;378:29-40 |
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
/
| 〈 |
|
〉 |