Specific tracking of N-terminal clipping on histone H3 in Tetrahymena enabled by a custom branched-peptide antibody

Fan Wei , Bo Pan , Xiangning Han , Saleh A. Al-Farraj , Jianxin Sui , Shan Gao

Marine Life Science & Technology ›› : 1 -13.

PDF
Marine Life Science & Technology ›› :1 -13. DOI: 10.1007/s42995-025-00351-4
Research Paper
research-article

Specific tracking of N-terminal clipping on histone H3 in Tetrahymena enabled by a custom branched-peptide antibody

Author information +
History +
PDF

Abstract

Histone H3 clipping, a unique but evolutionarily conserved post-translational modification that irreversibly removes the N-terminal tail of H3, has been reported across diverse eukaryotic lineages. In Tetrahymena thermophila, a ciliate with nuclear dimorphism, H3 clipping is a bona fide proteolytic event generating H3F (H3-Fast) by removing the first six N-terminal amino acids, specifically in the transcriptionally silent micronucleus (MIC). However, the detection of H3F remains technically demanding, time-consuming, and lacks spatio-temporal resolution. To overcome this, a 2 × branched peptide antigen was developed to generate a high-specificity antibody that exclusively recognizes H3F, effectively distinguishing it from full-length H3 and other truncation variants. This antibody eliminated the need for labor-intensive MIC isolation and histone extraction, enabling rapid, small-scale detection directly from whole-cell lysates. Using this antibody, dynamic subcellular localization of H3F was investigated through different cell stages, revealing its persistence during vegetation, starvation and early conjugation. However, H3F disappeared concurrently with macronuclear anlage formation, supporting the notation that removal of H3F is a prerequisite for the new macronucleus development. Comparative analyses further revealed that H3 Ser10 phosphorylation, though previously used as an alternative H3F marker, actually occurs strictly after clipping, refining the temporal hierarchy of these two chromatin events. This work provides the first in situ, high-resolution method to track endogenous H3 clipping, providing both a technical platform and new biological insight into the developmental regulation of proteolytic histone modifications.

Keywords

Branched-peptide antibody / Histone H3 clipping / Histone post-translational modification / In situ detection / Tetrahymena thermophila

Cite this article

Download citation ▾
Fan Wei, Bo Pan, Xiangning Han, Saleh A. Al-Farraj, Jianxin Sui, Shan Gao. Specific tracking of N-terminal clipping on histone H3 in Tetrahymena enabled by a custom branched-peptide antibody. Marine Life Science & Technology 1-13 DOI:10.1007/s42995-025-00351-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams-Cioaba MA, Krupa JC, Xu C, Mort JS, Min J. Structural basis for the recognition and cleavage of histone H3 by cathepsin L. Nat Commun, 2011, 2: 197

[2]

Allis CD, Wiggins JC. Histone rearrangements accompany nuclear differentiation and dedifferentiation in Tetrahymena. Dev Biol, 1984, 101: 282-294

[3]

Allis CD, Wiggins JC. Proteolytic processing of micronuclear H3 and histone phosphorylation during conjugation in Tetrahymena thermophila. Exp Cell Res, 1984, 153: 287-298

[4]

Allis CD, Glover CV, Gorovsky MA. Micronuclei of Tetrahymena contain two types of histone H3. Proc Natl Acad Sci USA, 1979, 76: 4857-4861

[5]

Allis CD, Bowen JK, Abraham GN, Glover CV, Gorovsky MA. Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell, 1980, 20: 55-64

[6]

Allis CD, Chicoine LG, Richman R, Schulman IG. Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena. Proc Natl Acad Sci USA, 1985, 82: 8048-8052

[7]

Azad GK, Tomar RS. Partial purification of histone H3 proteolytic activity from the budding yeast Saccharomyces cerevisiae. Yeast, 2016, 33: 217-226

[8]

Azad GK, Swagatika S, Kumawat M, Kumawat R, Tomar RS. Modifying chromatin by histone tail clipping. J Mol Biol, 2018, 430: 3051-3067

[9]

Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res, 2011, 21: 381-395

[10]

Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell, 1996, 84: 843-851

[11]

Cai X, Zhai Z, Noto T, Dong G, Wang X, Liucong M, Liu Y, Agreiter C, Loidl J, Mochizuki K, Tian M. A specialized TFIIB is required for transcription of transposon-targeting noncoding RNAs. Nucleic Acids Res, 2025, 53 gkaf427

[12]

Calvo-Calle JM, Oliveira GA, Watta CO, Soverow J, Parra-Lopez C, Nardin EH. A linear peptide containing minimal T- and B-cell epitopes of Plasmodium falciparum circumsporozoite protein elicits protection against transgenic sporozoite challenge. Infect Immun, 2006, 74: 6929-6939

[13]

Chalker DL. Dynamic nuclear reorganization during genome remodeling of Tetrahymena. Biochim Biophys Acta Mol Cell Res, 2008, 1783: 2130-2136

[14]

Chalker DL, Meyer E, Mochizuki K. Epigenetics of ciliates. Cold Spring Harb Perspect Biol, 2013, 5 a017764

[15]

Cheng T, Zhang J, Li H, Diao J, Zhang W, Niu J, Kawaguchi T, Nakayama J-I, Kataoka K, Gao S. Identification and characterization of the de novo methyltransferases for eukaryotic N6-methyladenine (6mA). Sci Adv, 2025, 11 eadq4623

[16]

Cole E, Sugai T. Developmental progression of Tetrahymena through the cell cycle and conjugation. Methods Cell Biol, 2012, 109: 177-236

[17]

Cui B, Liu Y, Gorovsky MA. Deposition and function of histone H3 variants in Tetrahymena thermophila. Mol Cell Biol, 2006, 26: 7719-7730

[18]

Dhaenens M. Histone clipping: the punctuation in the histone code. EMBO Rep, 2021, 22 e53440

[19]

Dhaenens M, Glibert P, Meert P, Vossaert L, Deforce D. Histone proteolysis: a proposal for categorization into clipping and degradation. BioEssays, 2015, 37: 70-79

[20]

Duan L, Cheng T, Wei F, Qiao Y, Wang C, Warren A, Niu J, Wang Y. New contribution to epigenetic studies: isolation of micronuclei with high purity and DNA integrity in the model ciliated protist, Tetrahymena thermophila. Eur J Protistol, 2021, 80 125804

[21]

Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD. Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell, 2008, 135: 284-294

[22]

Gao S, Xiong J, Zhang C, Berquist BR, Yang R, Zhao M, Molascon AJ, Kwiatkowski SY, Yuan D, Qin Z, Wen J, Kapler GM, Andrews PC, Miao W, Liu Y. Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev, 2013, 27: 1662-1679

[23]

Gunjan A, Paik J, Verreault A. The emergence of regulated histone proteolysis. Curr Opin Genet Dev, 2006, 16: 112-118

[24]

Hao H, Lian Y, Ren C, Yang S, Zhao M, Bo T, Xu J, Wang W. RebL1 is required for macronuclear structure stability and gametogenesis in Tetrahymena thermophila. Mar Life Sci Technol, 2024, 6: 183-197

[25]

Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma, 1997, 106: 348-360

[26]

Howe CG, Gamble MV. Enzymatic cleavage of histone H3: a new consideration when measuring histone modifications in human samples. Clin Epigenet, 2015, 7: 7

[27]

Jin D, Li C, Chen X, Byerly A, Stover NA, Zhang T, Shao C, Wang Y. Comparative genome analysis of three euplotid protists provides insights into the evolution of nanochromosomes in unicellular eukaryotic organisms. Mar Life Sci Technol, 2023, 5: 300-315

[28]

Karrer KM. Collins K. Nuclear dualism. Methods in cell biology, 2012New York2952109

[29]

Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 1999, 98: 285-294

[30]

Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128: 693-705

[31]

Liu Y, Mochizuki K, Gorovsky MA. Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proc Natl Acad Sci USA, 2004, 101: 1679-1684

[32]

Liu Y, Nan B, Niu J, Kapler GM, Gao S. An optimized and versatile counter-flow centrifugal elutriation workflow to obtain synchronized eukaryotic cells. Front Cell Dev Biol, 2021, 9 664418

[33]

Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 1997, 389: 251-260

[34]

Lyu L, Zhang X, Gao Y, Zhang T, Fu J, Stover NA, Gao F. From germline genome to highly fragmented somatic genome: genome-wide DNA rearrangement during the sexual process in ciliated protists. Mar Life Sci Technol, 2024, 6: 31-49

[35]

Madinger CL, Collins K, Fields LG, Taron CH, Benner JS. Constitutive secretion in Tetrahymena thermophila. Eukaryot Cell, 2010, 9: 674-681

[36]

Mahendra G, Kanungo MS. Age-related and steroid induced changes in the histones of the quail liver. Arch Gerontol Geriatr, 2000, 30: 109-114

[37]

Nabeel-Shah S, Ashraf K, Saettone A, Garg J, Derynck J, Lambert J-P, Pearlman RE, Fillingham J. Nucleus-specific linker histones Hho1 and Mlh1 form distinct protein interactions during growth, starvation and development in Tetrahymena thermophila. Sci Rep, 2020, 10: 168

[38]

Ng HH, Robert F, Young RA, Struhl K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell, 2003, 11: 709-719

[39]

Orhan YD, Üstüntanır Dede AF, Duran Ş, Arslanyolu M. Use of E-64 cysteine protease inhibitor for the recombinant protein production in Tetrahymena thermophila. Eur J Protistol, 2024, 94 126085

[40]

Orias E, Cervantes MD, Hamilton EP. Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes. Res Microbiol, 2011, 162: 578-586

[41]

Papazyan R, Voronina E, Chapman JR, Luperchio TR, Gilbert TM, Meier E, Mackintosh SG, Shabanowitz J, Tackett AJ, Reddy KL, Coyne RS, Hunt DF, Liu Y, Taverna SD. Methylation of histone H3K23 blocks DNA damage in pericentric heterochromatin during meiosis. Elife, 2014, 3 e02996

[42]

Roquis D, Cosseau C, Brener Raffalli K, Romans P, Masanet P, Mitta G, Grunau C, Vidal-Dupiol J. The tropical coral Pocillopora acuta displays an unusual chromatin structure and shows histone H3 clipping plasticity upon bleaching. Wellcome Open Res, 2021, 6: 195

[43]

Sandoval-Basilio J, Serafín-Higuera N, Reyes-Hernandez OD, Serafín-Higuera I, Leija-Montoya G, Blanco-Morales M, Sierra-Martínez M, Ramos-Mondragon R, García S, López-Hernández LB, Yocupicio-Monroy M, Alcaraz-Estrada SL. Low proteolytic clipping of histone H3 in cervical cancer. J Cancer, 2016, 7: 1856-1860

[44]

Santos-Rosa H, Kirmizis A, Nelson C, Bartke T, Saksouk N, Cote J, Kouzarides T. Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol, 2009, 16: 17-22

[45]

Smith J, Torigoe S, Maxson J, Fish L, Wiley E. A class II histone deacetylase acts on newly synthesized histones in Tetrahymena. Eukaryot Cell, 2008, 7: 471-482

[46]

Strahl BD, Allis CD. The language of covalent histone modifications. Nature, 2000, 403: 41-45

[47]

Tam JP. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci USA, 1988, 85: 5409-5413

[48]

Tilley DO, Abuabed U, Zimny Arndt U, Schmid M, Florian S, Jungblut PR, Brinkmann V, Herzig A, Zychlinsky A. Histone H3 clipping is a novel signature of human neutrophil extracellular traps. Elife, 2022, 11 e68283

[49]

Villar-Garea A, Imhof A. The analysis of histone modifications. Biochim Biophys Acta Proteins Proteom, 2006, 1764: 1932-1939

[50]

Vossaert L, Meert P, Scheerlinck E, Glibert P, Van Roy N, Heindryckx B, De Sutter P, Dhaenens M, Deforce D. Identification of histone H3 clipping activity in human embryonic stem cells. Stem Cell Res, 2014, 13: 123-134

[51]

Wahab S, Saettone A, Nabeel-Shah S, Dannah N, Fillingham J. Exploring the histone acetylation cycle in the protozoan model Tetrahymena thermophila. Front Cell Dev Biol, 2020, 8: 509

[52]

Wang H, Zhai L, Xu J, Joo H-Y, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell, 2006, 22: 383-394

[53]

Wang Y, Nan B, Ye F, Zhang Z, Yang W, Pan B, Wei F, Duan L, Li H, Niu J, Ju A, Liu Y, Wang D, Zhang W, Liu Y, Gao S. Dual modes of DNA N6-methyladenine maintenance by distinct methyltransferase complexes. Proc Natl Acad Sci USA, 2025, 122 e2413037121

[54]

Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD. Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci USA, 1998, 95: 7480-7484

[55]

Wei Y, Yu L, Bowen J, Gorovsky MA, Allis CD. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell, 1999, 97: 99-109

[56]

Wei F, Pan B, Diao J, Wang Y, Sheng Y, Gao S. The micronuclear histone H3 clipping in the unicellular eukaryote Tetrahymena thermophila. Mar Life Sci Technol, 2022, 4: 584-594

[57]

Xue Y, Vashisht AA, Tan Y, Su T, Wohlschlegel JA. PRB1 is required for clipping of the histone H3 N terminal tail in Saccharomyces cerevisiae. PLoS ONE, 2014, 9 e90496

[58]

Ye F, Chen X, Li Y, Ju A, Sheng Y, Duan L, Zhang J, Zhang Z, Al-Rasheid KAS, Stover NA, Gao S. Comprehensive genome annotation of the model ciliate Tetrahymena thermophila by in-depth epigenetic and transcriptomic profiling. Nucleic Acids Res, 2025, 53 gkae1177

[59]

Yi SJ, Kim K. Histone tail cleavage as a novel epigenetic regulatory mechanism for gene expression. BMB Rep, 2018, 51: 211-218

[60]

Zhang Z, Ju A, Wang Y, Jiang H, Liu Y, Gao S. Bromodomain-containing proteins in the unicellular eukaryote Tetrahymena thermophila. Zool Res, 2025, 46: 538-550

[61]

Zhou P, Wu E, Alam HB, Li Y. Histone cleavage as a mechanism for epigenetic regulation: current insights and perspectives. Curr Mol Med, 2014, 14: 1164-1172

RIGHTS & PERMISSIONS

The Author(s)

PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

/