Lysosomal protein SLC38A9 regulates arginine-mediated autophagy, ER stress, and apoptosis in abalone Haliotis discus hannai

Yue Liu , Dong Huang , Xinxin Li , Mingzhu Pan , Gaochan Qin , Xiaojun Yu , Mengxi Yang , Yaan-Kit Ng , Kangsen Mai , Wenbing Zhang

Marine Life Science & Technology ›› : 1 -18.

PDF
Marine Life Science & Technology ›› :1 -18. DOI: 10.1007/s42995-025-00348-z
Research Paper
research-article

Lysosomal protein SLC38A9 regulates arginine-mediated autophagy, ER stress, and apoptosis in abalone Haliotis discus hannai

Author information +
History +
PDF

Abstract

The diverse functions of arginine make it an indispensable component for overall cellular health and function. This study evaluated the effect and mechanism of arginine on autophagy, endoplasmic reticulum (ER) stress, and apoptosis, which are key pathways that regulate cell homeostasis and fate. The results showed that the imbalance of arginine (deficiency or excess) inhibited the growth of cells and disrupted cell homeostasis by increasing the level of autophagy, ER stress, as well as apoptosis. This in turn affects cell growth, homeostasis, and fate. Furthermore, the present study validated the lysosomal protein localization and arginine binding ability of the solute carrier family 38 member 9 (SLC38A9). This study also demonstrated SLC38A9 interaction with Ras-related GTP binding (Rag) complexes, the core sensor of amino acid signaling in the mechanistic target of rapamycin (mTOR) signaling pathway. This provides evidence for the sensing of arginine signals by SLC38A9. Furthermore, the siRNA-mediated knockdown of slc38a9 exacerbated the extent of the autophagy, ER stress, and apoptosis, while stable expression of SLC38A9 was found to alleviate these processes, as well as the disruption of cell homeostasis and function caused by arginine deficiency. The present study comprehensively explored the function of arginine in cell growth and fate, revealed the vital role and mechanism of SLC38A9 in arginine sensing, and expanded the understanding of the multiple functions of SLC38A9 in abalone.

Keywords

Arginine / Abalone / SLC38A9 / Autophagy / Apoptosis

Cite this article

Download citation ▾
Yue Liu, Dong Huang, Xinxin Li, Mingzhu Pan, Gaochan Qin, Xiaojun Yu, Mengxi Yang, Yaan-Kit Ng, Kangsen Mai, Wenbing Zhang. Lysosomal protein SLC38A9 regulates arginine-mediated autophagy, ER stress, and apoptosis in abalone Haliotis discus hannai. Marine Life Science & Technology 1-18 DOI:10.1007/s42995-025-00348-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albaugh VL, Pinzon-Guzman C, Barbul A. Arginine-dual roles as an onconutrient and immunonutrient. J Surg Oncol, 2017, 115: 273-280

[2]

Alqahtani T, Deore SL, Kide AA, Shende BA, Sharma R, Chakole RD, Nemade LS, Kale NK, Borah S, Deokar SS, Behera A, Bhandari DD, Gaikwad N, Azad A, Ghosh A. Mitochondrial dysfunction and oxidative stress in Alzheimer's disease, and Parkinson's disease, Huntington's disease and Amyotrophic Lateral Sclerosis—an updated review. Mitochondrion, 2023, 71: 83-92

[3]

Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol, 2020, 66: 116-128

[4]

Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium, 2008, 43: 184-195

[5]

Biswas U, Roy R, Ghosh S, Chakrabarti G. The interplay between autophagy and apoptosis: its implication in lung cancer and therapeutics. Cancer Lett, 2024, 585 216662

[6]

Bobak Y, Kurlishchuk Y, Vynnytska-Myronovska B, Grydzuk O, Shuvayeva G, Redowicz MJ, Kunz-Schughart LA, Stasyk O. Arginine deprivation induces endoplasmic reticulum stress in human solid cancer cells. Int J Biochem Cell B, 2016, 70: 29-38

[7]

Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol, 2020, 21: 85-100

[8]

Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol, 2013, 15: 713-720

[9]

Changou CA, Chen YR, Xing L, Yen Y, Chuang FY, Cheng RH, Bold RJ, Ann DK, Kung HJ. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc Natl Acad Sci U S A, 2014, 111: 14147-14152

[10]

Chen CL, Hsu SC, Ann DK, Yen Y, Kung HJ. Arginine signaling and cancer metabolism. Cancers (Basel), 2021, 13 3541

[11]

Cheng CT, Qi Y, Wang YC, Chi KK, Chung Y, Ouyang C, Chen YR, Oh ME, Sheng XP, Tang YL, Liu YR, Lin HH, Kuo CY, Schones D, Vidal CM, Chu JCY, Wang HJ, Chen YH, Miller KM, Chu PG, et al.. Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction. Commun Biol, 2018, 1: 178

[12]

Condon KJ, Sabatini DM. Nutrient regulation of mTORC1 at a glance. J Cell Sci, 2019, 132 jcs222570

[13]

Del Campo A, Valenzuela R, Videla LA, Zúñiga-Hernandez J. Cellular functional, protective or damaging responses associated with different redox imbalance intensities: a comprehensive review. Curr Med Chem, 2023, 30: 3927-3939

[14]

Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature, 2015, 517: 302-310

[15]

Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol, 2022, 221 e202201159

[16]

Fernandes SA, Angelidaki DD, Nüchel J, Pan J, Gollwitzer P, Elkis Y, Artoni F, Wilhelm S, Kovacevic-Sarmiento M, Demetriades C. Spatial and functional separation of mTORC1 signalling in response to different amino acid sources. Nat Cell Biol, 2024, 26: 1918-1933

[17]

Field CJ, Johnson I, Pratt VC. Glutamine and arginine: immunonutrients for improved health. Med Sci Sports Exerc, 2000, 32: 377-388

[18]

Fromm SA, Lawrence RE, Hurley JH. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9. Nat Struct Mol Biol, 2020, 27: 1017-1023

[19]

Fujiwara T, Kanazawa S, Ichibori R, Tanigawa T, Magome T, Shingaki K, Miyata S, Tohyama M, Hosokawa K. L-arginine stimulates fibroblast proliferation through the GPRC6A-ERK1/2 and PI3K/Akt pathway. PLoS ONE, 2014, 9 e92168

[20]

Gai ZC, Hu SH, He YJ, Yan SJ, Wang RR, Gong GL, Zhao JQ. L-arginine alleviates heat stress-induced mammary gland injury through modulating CASTOR1-mTORC1 axis mediated mitochondrial homeostasis. Sci Total Environ, 2024, 926 172017

[21]

Gao XX, Li XD, Wang ZB, Li K, Liang YX, Yao XL, Zhang GM, Wang F. L-argine regulates the proliferation, apoptosis and endocrine activity by alleviating oxidative stress in sheep endometrial epithelial cells. Theriogenology, 2022, 179: 187-196

[22]

García-Navas R, Munder M, Mollinedo F. Depletion of L-arginine induces autophagy as a cytoprotective response to endoplasmic reticulum stress in human T lymphocytes. Autophagy, 2012, 8: 1557-1576

[23]

Geiger R, Rieckmann JC, Wolf T, Basso C, Feng YH, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, Zamboni N, Sallusto F, Lanzavecchia A. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell, 2016, 167: 829-842

[24]

Gonen N, Meller A, Sabath N, Shalgi R. Amino acid biosynthesis regulation during endoplasmic reticulum stress is coupled to protein expression demands. Iscience, 2019, 19: 204-213

[25]

He L, Zhang J, Zhao JS, Ma N, Kim SW, Qiao SY, Ma X. Autophagy: the last defense against cellular nutritional stress. Adv Nutr, 2018, 9: 493-504

[26]

Hetz C, Zhang KZ, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol, 2020, 21: 421-438

[27]

Jewell JL, Russell RC, Guan KL. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol, 2013, 14: 133-139

[28]

Jia JY, Abudu YP, Claude-Taupin A, Gu YX, Kumar S, Choi SW, Peters R, Mudd MH, Allers L, Salemi M, Phinney B, Johansen T, Deretic V. Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy. Autophagy, 2019, 15: 169-171

[29]

Jin ZY, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther, 2005, 4: 139-163

[30]

Jin M, Klionsky DJ. The amino acid transporter SLC38A9 regulates MTORC1 and autophagy. Autophagy, 2015, 11: 1709-1710

[31]

Jin CL, Zhu M, Ye JL, Song ZW, Zheng CT, Chen W. Autophagy: are amino acid signals dependent on the mTORC1 pathway or independent?. Curr Issues Mol Biol, 2024, 46: 8780-8793

[32]

Jin YF, Ji WQ, Zhang L, Dang DJ, Yu BQ, Zhang XL, Zhang YX, Li JQ, Zhang YD, Yang RX, Yang HY, Chen SY, Wang F, Duan GC. Arginine depletion-induced autophagy and metabolic dysregulation are involved in the disease severity of hand, foot, and mouth disease. Virulence, 2025, 16 2440541

[33]

Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell, 2009, 20: 1992-2003

[34]

Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett, 2010, 584: 1287-1295

[35]

Jung J, Genau HM, Behrends C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol Cell Biol, 2015, 35: 2479-2494

[36]

Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest, 2015, 125: 25-32

[37]

Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol, 2019, 21: 63-71

[38]

Kim R, Emi M, Tanabe K, Murakami S. Role of the unfolded protein response in cell death. Apoptosis, 2006, 11: 5-13

[39]

Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol, 2008, 10: 935-945

[40]

Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell, 2010, 40: 280-293

[41]

Li WQ, Wu JY, Xiang DX, Luo SL, Hu XB, Tang TT, Sun TL, Liu XY. Micelles loaded with puerarin and modified with triphenylphosphonium cation possess mitochondrial targeting and demonstrate enhanced protective effect against isoprenaline-induced H9c2 cells apoptosis. Int J Nanomed, 2019, 14: 8345-8360

[42]

Li S, Ye XY, Wen XL, Yang XF, Wang L, Gao KG, Xiao H, Jiang ZY. Arginine and its metabolites stimulate proliferation, differentiation, and physiological function of porcine trophoblast cells through β-catenin and mTOR pathways. BMC Vet Res, 2024, 20: 167

[43]

Li X, Wang SD, Zhang MZ, Li M. The SLC38A9-mTOR axis is involved in autophagy in the juvenile yellow catfish (Pelteobagrus fulvidraco) under ammonia stress. Environ Pollut, 2024, 343 123211

[44]

Liu C, Wang X, Zhou H, Mai K, He G. Recent advances in amino acid sensing and new challenges for protein nutrition in aquaculture. Mar Life Sci Technol, 2019, 1: 50-59

[45]

Liu C, Ji L, Hu J, Zhao Y, Johnston LJ, Zhang X, Ma X. Functional amino acids and autophagy: diverse signal transduction and application. Int J Mol Sci, 2021, 22: 11427

[46]

Liu Y, Yu H, Guo Y, Huang D, Liu J, Pan M, Wang L, Zhang W, Mai K. Arginine regulates TOR signaling pathway through SLC38A9 in abalone Haliotis discus hannai. Cells, 2021, 10: 2552

[47]

Makio T, Chen JS, Simmen T. ER stress as a sentinel mechanism for ER Ca2+ homeostasis. Cell Calcium, 2024, 124 102961

[48]

Martinet W, De Meyer GR, Herman AG, Kockx MM. Amino acid deprivation induces both apoptosis and autophagy in murine C2C12 muscle cells. Biotechnol Lett, 2005, 27: 1157-1163

[49]

Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell, 2011, 147: 728-741

[50]

Mullooly N, Vernon W, Smith DM, Newsholme P. Elevated levels of branched-chain amino acids have little effect on pancreatic islet cells, but L-arginine impairs function through activation of the endoplasmic reticulum stress response. Exp Physiol, 2014, 99: 538-551

[51]

Naama M, Telpaz S, Awad A, Ben-Simon S, Harshuk-Shabso S, Modilevsky S, Rubin E, Sawaed J, Zelik L, Zigdon M, Asulin N, Turjeman S, Werbner M, Wongkuna S, Feeney R, Schroeder BO, Nyska A, Nuriel-Ohayon M, Bel S. Autophagy controls mucus secretion from intestinal goblet cells by alleviating ER stress. Cell Host Microbe, 2023, 31: 433-446

[52]

Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta Mol Cell Res, 2013, 1833: 3448-3459

[53]

Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell, 2012, 148: 1145-1159

[54]

Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond—mitochondrial performance in apoptosis. FEBS J, 2018, 285: 416-431

[55]

Poillet-Perez L, Xie XQ, Zhan L, Yang Y, Sharp DW, Hu ZS, Su XY, Maganti A, Jiang C, Lu WY, Zheng HY, Bosenberg MW, Mehnert JM, Guo JY, Lattime E, Rabinowitz JD, White E. Autophagy maintains tumour growth through circulating arginine. Nature, 2018, 563: 569-573

[56]

Qian YX, Zhou FF, Chen Q, Dong F, Xu HY, Sun YL, Wang JT, Han T. Arginine alleviates LPS-induced leukocytes inflammation and apoptosis via adjusted NODs signaling. Fish Shellfish Immunol, 2024, 154 109985

[57]

Qiu FM, Chen YR, Liu XY, Chu CY, Shen LJ, Xu JH, Gaur S, Forman HJ, Zhang H, Zheng S, Yen Y, Huang J, Kung HJ, Ann DK. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal, 2014, 7 ra31

[58]

Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KV, Bigenzahn JW, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti-Furga G. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature, 2015, 519: 477-481

[59]

Sahoo G, Samal D, Khandayataray P, Murthy MK. A review on caspases: key regulators of biological activities and apoptosis. Mol Neurobiol, 2023, 60: 5805-5837

[60]

Saka WA, Adeogun AE, Adisa VI, Olayioye A, Igbayilola YD, Akhigbe RE. L-arginine attenuates dichlorvos-induced testicular toxicity in male Wistar rats by suppressing oxidative stress-dependent activation of caspase 3-mediated apoptosis. Biomed Pharmacother, 2024, 178 117136

[61]

Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 2008, 320: 1496-1501

[62]

Savaraj N, You M, Wu C, Wangpaichitr M, Kuo MT, Feun LG. Arginine deprivation, autophagy, apoptosis (AAA) for the treatment of melanoma. Curr Mol Med, 2010, 10: 405-412

[63]

She H, Zheng J, Zhao GZ, Du YX, Tan L, Chen ZS, Wu YY, Li Y, Liu YY, Sun Y, Hu Y, Zuo DY, Mao QX, Liu LM, Li T. Arginase 1 drives mitochondrial cristae remodeling and PANoptosis in ischemia/hypoxia-induced vascular dysfunction. Signal Transduct Target Ther, 2025, 10: 167

[64]

Shen K, Sabatini DM. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci U S A, 2018, 115: 9545-9550

[65]

Song SL, Tan J, Miao YY, Li MM, Zhang Q. Crosstalk of autophagy and apoptosis: involvement of the dual role of autophagy under ER stress. J Cell Physiol, 2017, 232: 2977-2984

[66]

Song SL, Tan J, Miao YY, Zhang Q. Crosstalk of ER stress-mediated autophagy and ER-phagy: involvement of UPR and the core autophagy machinery. J Cell Physiol, 2018, 233: 3867-3874

[67]

Suzuki A, Iwata J. Amino acid metabolism and autophagy in skeletal development and homeostasis. Bone, 2021, 146 115881

[68]

Vogler M, Braun Y, Smith VM, Westhoff MA, Pereira RS, Pieper NM, Anders M, Callens M, Vervliet T, Abbas M, Macip S, Schmid R, Bultynck G, Dyer MJ. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther, 2025, 10: 91

[69]

Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011, 334: 1081-1086

[70]

Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini BL, Sabatini DM. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 2015, 347: 188-194

[71]

Wang D, Guo C, Wan X, Guo K, Niu H, Zheng R, Chai J, Jiang S. Identification of amino acid response element of SLC38A9 as an ATF4-binding site in porcine skeletal muscle cells. Biochem Biophys Res Commun, 2021, 569: 167-173

[72]

Wang Q, Xu Z, Ai Q. Arginine metabolism and its functions in growth, nutrient utilization, and immunonutrition of fish. Anim Nutr, 2021, 7: 716-727

[73]

Wang Y, Li JX, Wang SS, Pang YH, Liu PX, Xie BX, Dou SS, Yang TW, Liu XN, Shi Y, Chen DX. The hepatitis B virus promotes the progression of non-alcoholic fatty liver disease through incomplete autophagy. Free Radic Biol Med, 2023, 204: 326-336

[74]

Wang XH, Zhang T, Li WL, Wang HL, Yan L, Zhang XW, Zhao LW, Wang NX, Zhang BB. Arginine alleviates Clostridium perfringens α toxin-induced intestinal injury in vivo and in vitro via the SLC38A9/mTORC1 pathway. Front Immunol, 2024, 15: 1357072

[75]

Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc RJ, Carey SM, Smith SB, Spencer TE, Yin Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 2009, 37: 153-168

[76]

Wu TY, Wang C, Ding LY, Shen YZ, Cui HH, Wang MZ, Wang HR. Arginine relieves the inflammatory response and enhances the casein expression in bovine mammary epithelial cells induced by lipopolysaccharide. Mediators Inflamm, 2016, 2016 9618795

[77]

Wu X, Chen J, Liu C, Wang X, Zhou H, Mai K, He G. Slc38a9 deficiency induces apoptosis and metabolic dysregulation and leads to premature death in zebrafish. Int J Mol Sci, 2022, 23: 4200

[78]

Wyant GA, Abu-Remaileh M, Wolfson RL, Chen WW, Freinkman E, Danai LV, Vander Heiden MG, Sabatini DM. mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell, 2017, 171: 642-654

[79]

Xing ZM, Yan JY, Miao YX, Ruan YW, Yao HJ, Zhou YK, Tang YQ, Li GR, Song ZB, Peng YY, Huang J. Endoplasmic reticulum-targeting ouinazolinone-based lipophilic probe for specific photoinduced ferroptosis and its induced lipid dynamic regulation. J Med Chem, 2024, 67: 1900-1913

[80]

Xu L, Lin X, Li X, Hu Z, Hou Q, Wang Y, Wang Z. Integration of transcriptomics and metabolomics provides metabolic and functional insights into reduced insulin secretion in MIN6 beta-cells exposed to deficient and excessive arginine. FASEB J, 2022, 36 e22206

[81]

Yanagitani K, Kimata Y, Kadokura H, Kohno K. Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA. Science, 2011, 331: 586-589

[82]

Yang ZF, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol, 2010, 22: 124-131

[83]

Yu H, Sun L, Fan W, Chen H, Guo Y, Liu Y, Gao W, Zhang W, Mai K. Effects of dietary arginine on growth, anti-oxidative enzymes, biomarkers of immunity, amino acid metabolism and resistance to Vibrio parahaemolyticus challenge in abalone Haliotis discus hannai. Aquaculture, 2022, 549 737707

[84]

Zhang X, Ning YC, Xiao YZ, Duan HX, Qu GF, Liu X, Du Y, Jiang DJ, Zhou JL. MAEL contributes to gastric cancer progression by promoting ILKAP degradation. Oncotarget, 2017, 8: 113331-113344

[85]

Zhang H, Liu X, Fan Y, Yu Y, Loor JJ, Elsabagh M, Peng A, Wang H. L-arginine alleviates hydrogen peroxide-induced oxidative damage in ovine intestinal epithelial cells by regulating apoptosis, mitochondrial function, and autophagy. J Nutr, 2021, 151: 1038-1046

[86]

Zhao CJ, Yu D, He ZQ, Bao LJ, Feng LJ, Chen LT, Liu ZY, Hu XY, Zhang NS, Wang TJ, Fu YH. Endoplasmic reticulum stress-mediated autophagy activation is involved in cadmium-induced ferroptosis of renal tubular epithelial cells. Free Radic Biol Med, 2021, 175: 236-248

[87]

Zheng HO, Guo Q, Duan XZ, Xu Z, Wang QC. L-arginine inhibited apoptosis of fish leukocytes via regulation of NF-κB-mediated inflammation, NO synthesis, and anti-oxidant capacity. Biochimie, 2019, 158: 62-72

[88]

Zhong SS, Sun ZY, Tian QY, Wen W, Chen FM, Huang XG, Li YH. Lactobacillus delbrueckii alleviates lipopolysaccharide-induced muscle inflammation and atrophy in weaned piglets associated with inhibition of endoplasmic reticulum stress and protein degradation. FASEB J, 2024, 38 E70041

[89]

Zhou Y, Li J, Yang XX, Song Y, Li HG. Rhophilin rho GTPase binding protein 1-antisense RNA 1 (RHPN1-AS1) promotes ovarian carcinogenesis by sponging microRNA-485-5p and releasing DNA topoisomerase II alpha (TOP2A). Bioengineered, 2021, 12: 12003-12022

[90]

Zhou L, Ou SB, Liang T, Li ML, Xiao P, Cheng JX, Zhou JL, Yuan LQ. MAEL facilitates metabolic reprogramming and breast cancer progression by promoting the degradation of citrate synthase and fumarate hydratase via chaperone-mediated autophagy. FEBS J, 2023, 290: 3614-3628

[91]

Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science, 2011, 334: 678-683

RIGHTS & PERMISSIONS

Ocean University of China

PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

/