Metagenomics reveals diverse community of putative mercury methylators across different biogeochemical niches in Sansha Yongle blue hole

Heyu Lin , Xiao-Yu Zhu , Chun-Xu Xue , Peng Yao , Liang Fu , Zuosheng Yang , Xiao-Hua Zhang , John W. Moreau

Marine Life Science & Technology ›› : 1 -15.

PDF
Marine Life Science & Technology ›› :1 -15. DOI: 10.1007/s42995-025-00332-7
Research Paper
research-article

Metagenomics reveals diverse community of putative mercury methylators across different biogeochemical niches in Sansha Yongle blue hole

Author information +
History +
PDF

Abstract

Methylmercury (MeHg) is a potent neurotoxin and bioaccumulates in food webs. Microbial transformation of inorganic mercury (Hg) produces most of the MeHg in the marine environment. The gene pair hgcAB encodes for Hg methylation, a process predominantly attributed to anaerobic bacteria. However, recent studies indicate the formation of methylmercury in low-oxygen zones within marine water columns, although the mechanisms remain poorly understood. “Blue holes” are marine sinkholes containing redox gradients stratified with depth and high microbial diversity across a range of biogeochemical cycles. Here, we present the first metagenomic analysis focused on the potential for Hg methylation in a blue hole ecosystem. Yongle Blue Hole (YBH), currently the world’s deepest known blue hole, was selected as a representative site to investigate the genetic potential for Hg methylation and to explore the functional capabilities of putative Hg-methylators within this unique environment. Metagenomic analysis showed that the anoxic sulfidic deep water was likely to be a hotspot for Hg methylation, driven by abundant and diverse Deltaproteobacteria. In the suboxic intermediate layer, Nitrospina and Myxococcota dominated the Hg-methylating community. Furthermore, Hg methylators were found to have different lifestyles (free-living or particle-associated) and to occupy distinct ecological niches within the YBH. In addition, the contribution of sinking particles to Hg methylation, especially in the deep anoxic water column, was highlighted. Our study unveils the biodiversity and survival strategies of Hg methylators across distinct environments. The findings suggest that blue holes could serve as model stratified ecosystems for studying Hg methylation processes across different habitats.

Keywords

Mercury methylation / Hgc genes / Blue hole / Redox gradient / Particle-associated / Free-living / Metagenomics

Cite this article

Download citation ▾
Heyu Lin, Xiao-Yu Zhu, Chun-Xu Xue, Peng Yao, Liang Fu, Zuosheng Yang, Xiao-Hua Zhang, John W. Moreau. Metagenomics reveals diverse community of putative mercury methylators across different biogeochemical niches in Sansha Yongle blue hole. Marine Life Science & Technology 1-15 DOI:10.1007/s42995-025-00332-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, Bodenstein SW, Evans DA, Hung C-C, O’Neill M, Reiman D, Tunyasuvunakool K, Wu Z, Žemgulytė A, Arvaniti E, Beattie C, et al.. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630: 493-500

[2]

Almeida P, Stearns LB. Political opportunities and local grassroots environmental movements: the case of Minamata. Soc Probl, 1998, 45: 37-60

[3]

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol, 2012, 19: 455-477

[4]

Beckers F, Rinklebe J. Cycling of mercury in the environment: sources, fate, and human health implications: a review. Crit Rev Environ Sci Technol, 2017, 47: 693-794

[5]

Boening DW. Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 2000, 40: 1335-1351

[6]

Bolger AM, Usadel B, Lohse M. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120

[7]

Bravo AG, Bouchet S, Tolu J, Bjorn E, Mateos-Rivera A, Bertilsson S. Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nat Commun, 2017, 8: 14255

[8]

Breitburg D, Levin LA, Oschlies A, Gregoire M, Chavez FP, Conley DJ, Garcon V, Gilbert D, Gutierrez D, Isensee K, Jacinto GS, Limburg KE, Montes I, Naqvi SWA, Pitcher GC, Rabalais NN, Roman MR, Rose KA, Seibel BA, Telszewski M, et al.. Declining oxygen in the global ocean and coastal waters. Science, 2018, 359 eaam7240

[9]

Cabrol L, Capo E, van Vliet Daan M, von Meijenfeldt FAB, Bertilsson S, Villanueva L, Sánchez-Andrea I, Björn E, Andrea GB, Heimburger Boavida L-E (2023) Redox gradient shapes the abundance and diversity of mercury-methylating microorganisms along the water column of the Black Sea. mSystems 8:e00537–00523

[10]

Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, Revsbech NP, Ulloa O. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science, 2010, 330: 1375-1378

[11]

Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, Andersson AF, Buck M, Bjorn E. Deltaproteobacteria and Spirochaetes-like bacteria are abundant putative mercury methylators in oxygen-deficient water and marine particles in the Baltic Sea. Front Microbiol, 2020, 11 574080

[12]

Capo E, Cosio C, Gascón Díez E, Loizeau JL, Mendes E, Adatte T, Franzenburg S, Bravo AG. Anaerobic mercury methylators inhabit sinking particles of oxic water columns. Water Res, 2023, 229 119368

[13]

Capo E, Peterson BD, Kim M, Jones DS, Acinas SG, Amyot M, Bertilsson S, Björn E, Buck M, Cosio C, Elias D, Gilmour C, Goñi Urriza MS, Gu B, Lin H, Liu Y-R, McMahon K, Moreau JW, Pinhassi J, Podar M et al (2022) A consensus protocol for the recovery of mercury methylation genes from metagenomes. Mol Ecol Resour 23:484253

[14]

Chakraborty P, Mason RP, Jayachandran S, Vudamala K, Armoury K, Sarkar A, Chakraborty S, Bardhan P, Naik R. Effects of bottom water oxygen concentrations on mercury distribution and speciation in sediments below the oxygen minimum zone of the Arabian Sea. Mar Chem, 2016, 186: 24-32

[15]

Chen L, Yao P, Yang Z, Fu L. Seasonal and vertical variations of nutrient cycling in the world’s deepest blue hole. Front Mar Sci, 2023, 10: 1172475

[16]

Chen X, Liu J, Zhu XY, Xue CX, Yao P, Fu L, Yang Z, Sun K, Yu M, Wang X, Zhang X-H. Phylogenetically and metabolically diverse autotrophs in the world's deepest blue hole. ISME Commun, 2023, 3 117

[17]

Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr, 1969, 14: 454-458

[18]

Cooper CJ, Zheng K, Rush KW, Johs A, Sanders BC, Pavlopoulos GA, Kyrpides NC, Podar M, Ovchinnikov S, Ragsdale SW, Parks JM. Structure determination of the HgcAB complex using metagenome sequence data: insights into microbial mercury methylation. Commun Biol, 2020, 3: 320

[19]

Cossa D, Averty B, Pirrone N. The origin of methylmercury in open Mediterranean waters. Limnol Oceanogr, 2009, 54: 837-844

[20]

Dominguez L, Foster L, Straub JE, Thirumalai D. Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein. Proc Natl Acad Sci USA, 2016, 113: E5281-E5287

[21]

Doni L, Azzola A, Oliveri C, Bosi E, Auguste M, Morri C, Bianchi CN, Montefalcone M, Vezzulli L. Genome-resolved metagenomics revealed novel microbial taxa with ancient metabolism from macroscopic microbial mat structures inhabiting anoxic deep reefs of a Maldivian Blue Hole. Environ Microbiol Rep, 2024, 16 e13315

[22]

Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol, 2013, 47: 4967-4983

[23]

Drott A, Lambertsson L, Björn E, Skyllberg U. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environ Sci Technol, 2007, 41: 2270-2276

[24]

Enge AJ, Wukovits J, Wanek W, Watzka M, Witte UFM, Hunter WR, Heinz P. Carbon and nitrogen uptake of calcareous benthic foraminifera along a depth-related oxygen gradient in the OMZ of the Arabian Sea. Front Microbiol, 2016, 7 71

[25]

Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res, 2011, 39: W29-W37

[26]

Gascón Díez E, Loizeau J-L, Cosio C, Bouchet S, Adatte T, Amouroux D, Bravo AG. Role of settling particles on mercury methylation in the oxic water column of freshwater systems. Environ Sci Technol, 2016, 50: 11672-11679

[27]

Gionfriddo CM, Tate MT, Wick RR, Schultz MB, Zemla A, Thelen MP, Schofield R, Krabbenhoft DP, Holt KE, Moreau JW. Microbial mercury methylation in Antarctic sea ice. Nat Microbiol, 2016, 1: 16127

[28]

Gionfriddo CM, Soren AB, Wymore AM, Hartnett DS, Podar M, Parks JM, Elias DA, Gilmour CC. Transcriptional control of hgcAB by an ArsR-like regulator in Pseudodesulfovibrio mercurii ND132. Appl Environ Microbiol, 2023, 89 e0176822

[29]

Godzik A, Li W. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22: 1658-1659

[30]

Gonzalez BC, Iliffe TM, Macalady JL, Schaperdoth I, Kakuk B. Microbial hotspots in anchialine blue holes: initial discoveries from the Bahamas. Hydrobiologia, 2011, 677: 149-156

[31]

Graham AM, Aiken GR, Gilmour CC. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ Sci Technol, 2012, 46: 2715-2723

[32]

Graham ED, Heidelberg JF, Tully BJ. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J, 2018, 12: 1861-1866

[33]

Hansen HP. Grasshoff K, Kremling K, Ehrhardt M. Determination of oxygen. Methods of seawater analysis Third, 2009, Completely revised and extended edition edn, Wiley-VCH7589

[34]

Hawley AK, Torres-Beltran M, Zaikova E, Walsh DA, Mueller A, Scofield M, Kheirandish S, Payne C, Pakhomova L, Bhatia M, Shevchuk O, Gies EA, Fairley D, Malfatti SA, Norbeck AD, Brewer HM, Pasa-Tolic L, Del Rio TG, Suttle CA, Tringe S, et al.. A compendium of multi-omic sequence information from the Saanich Inlet water column. Sci Data, 2017, 4 170160

[35]

He P, Xie L, Zhang X, Li J, Lin X, Pu X, Yuan C, Tian Z, Li J. Microbial diversity and metabolic potential in the stratified Sansha Yongle Blue Hole in the South China Sea. Sci Rep, 2020, 10: 5949

[36]

Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol, 2013, 47: 2441-2456

[37]

Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ, 2015, 3 e1165

[38]

Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ, 2019, 7 e7359

[39]

Karstensen J, Stramma L, Visbeck M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog Oceanogr, 2008, 77: 331-350

[40]

Kindler GS, Wong HL, Larkum AWD, Johnson M, MacLeod FI, Burns BP. Genome-resolved metagenomics provides insights into the functional complexity of microbial mats in Blue Holes, Shark Bay. FEMS Microbiol Ecol, 2021, 98 fiab158

[41]

Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res, 2007, 35: 3100-3108

[42]

Lamborg CH, Yiğiterhan O, Fitzgerald WF, Balcom PH, Hammerschmidt CR, Murray J. Vertical distribution of mercury species at two sites in the western Black Sea. Mar Chem, 2008, 111: 77-89

[43]

Lamborg CH, Hammerschmidt CR, Bowman KL, Swarr GJ, Munson KM, Ohnemus DC, Lam PJ, Heimburger LE, Rijkenberg MJ, Saito MA. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature, 2014, 512: 65-68

[44]

Le Moigne FAC, Cisternas-Novoa C, Piontek J, Massmig M, Engel A. On the effect of low oxygen concentrations on bacterial degradation of sinking particles. Sci Rep, 2017, 7 16722

[45]

Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49: W293-W296

[46]

Li H. New strategies to improve minimap2 alignment accuracy. Bioinformatics, 2021, 37: 4572-4574

[47]

Li T, Feng A, Liu Y, Li Z, Guo K, Jiang W, Du J, Tian Z, Xu W, Liu Y, Wang Y. Three-dimensional (3D) morphology of Sansha Yongle Blue Hole in the South China Sea revealed by underwater remotely operated vehicle. Sci Rep, 2018, 8: 17122

[48]

Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, Holt KE, Moreau JW. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J, 2021, 15: 1810-1825

[49]

Lin H, Moody ERR, Williams TA, Moreau JW. On the origin and evolution of microbial mercury methylation. Genome Biol Evol, 2023, 15 evad051

[50]

Liu Y-R, Yu R-Q, Zheng Y-M, He J-Z, Voordouw G. Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in paddy soils along an Hg gradient. Appl Environ Microbiol, 2014, 80: 2874-2879

[51]

Liu C-M, Li D, Sadakane K, Luo R, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015, 31: 1674-1676

[52]

Ma M, Du H, Wang D. Mercury methylation by anaerobic microorganisms: a review. Crit Rev Environ Sci Technol, 2019, 49: 1893-1936

[53]

Martin JB, Gulley J, Spellman P. Tidal pumping of water between Bahamian blue holes, aquifers, and the ocean. J Hydrol, 2012, 416–417: 28-38

[54]

Moreau JW, Gionfriddo CM, Krabbenhoft DP, Ogorek JM, DeWild JF, Aiken GR, Roden EE. The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3. Front Microbiol, 2015, 6: 1389

[55]

Murray JW, Jannasch HW, Honjo S, Anderson RF, Reeburgh WS, Top Z, Friederich GE, Codispoti LA, Izdar E. Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature, 1989, 338: 411-413

[56]

Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol, 2015, 16: 51

[57]

Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA, Grønbech CH, Jensen LJ, Nielsen HB, Petersen TN, Winther O, Rasmussen S. Improved metagenome binning and assembly using deep variational autoencoders. Nat Biotechnol, 2021, 39: 555-560

[58]

Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J, 2017, 11: 2864-2868

[59]

Ortiz VL, Mason RP, Ward JE. An examination of the factors influencing mercury and methylmercury particulate distributions, methylation and demethylation rates in laboratory-generated marine snow. Mar Chem, 2015, 177: 753-762

[60]

Pante E, Simon-Bouhet B. Marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE, 2013, 8 e73051

[61]

Parks JM, Johs A, Podar M, Bridou R, Hurt RAJr, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L. The genetic basis for bacterial mercury methylation. Science, 2013, 339: 1332-1335

[62]

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res, 2015, 25: 1043-1055

[63]

Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol, 2018, 36: 996-1004

[64]

Patin NV, Dietrich ZA, Stancil A, Quinan M, Beckler JS, Hall ER, Culter J, Smith CG, Taillefert M, Stewart FJ. Gulf of Mexico blue hole harbors high levels of novel microbial lineages. ISME J, 2021, 15: 2206-2232

[65]

Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, Palumbo AV, Somenahally AC, Elias DA. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv, 2015, 1 e1500675

[66]

Pogozheva ID, Tristram-Nagle S, Mosberg HI, Lomize AL. Structural adaptations of proteins to different biological membranes. Biochim Biophys Acta, 2013, 1828: 2592-2608

[67]

Rabalais NN, Turner RE, Jr. WJW (2002) Gulf of Mexico hypoxia, aka "The dead zone". Annu Rev Ecol Syst 33:235–263

[68]

Regnell O, Watras CJ. Microbial mercury methylation in aquatic environments—a critical review of published field and laboratory studies. Environ Sci Technol, 2018, 53: 4-19

[69]

Rosati G, Heimbürger LE, Melaku Canu D, Lagane C, Laffont L, Rijkenberg MJA, Gerringa LJA, Solidoro C, Gencarelli CN, Hedgecock IM, De Baar HJW, Sonke JE. Mercury in the Black Sea: new insights from measurements and numerical modeling. Glob Biogeochem Cycles, 2018, 32: 529-550

[70]

Roth Rosenberg D, Haber M, Goldford J, Lalzar M, Aharonovich D, Al-Ashhab A, Lehahn Y, Segre D, Steindler L, Sher D. Particle-associated and free-living bacterial communities in an oligotrophic sea are affected by different environmental factors. Environ Microbiol, 2021, 23: 4295-4308

[71]

Saunders JK, Fuchsman CA, McKay C, Rocap G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc Natl Acad Sci USA, 2019, 116: 9925-9930

[72]

Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FM. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA, 2011, 108: 8714-8719

[73]

Schmidt HA, Minh BQ, von Haeseler A, Nguyen L-T. IQ-tree: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2014, 32: 268-274

[74]

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, 30: 2068-2069

[75]

Smith SD, Bridou R, Johs A, Parks JM, Elias DA, Hurt RAJr, Brown SD, Podar M, Wall JD. Site-directed mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation. Appl Environ Microbiol, 2015, 81: 3205-3217

[76]

Standley DM, Katoh K. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 2013, 30: 772-780

[77]

Starr LD, McCarthy MJ, Hammerschmidt CR, Subramaniam A, Despins MC, Montoya JP, Newell SE. Mercury methylation linked to nitrification in the tropical North Atlantic Ocean. Mar Chem, 2022, 247 104174

[78]

Steinsdóttir HGR, Gómez-Ramírez E, Mhatre S, Schauberger C, Bertagnolli AD, Pratte ZA, Stewart FJ, Thamdrup B, Bristow LA. Anaerobic methane oxidation in a coastal oxygen minimum zone: spatial and temporal dynamics. Environ Microbiol, 2022, 24: 2361-2379

[79]

Sugimura Y, Suzuki Y. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar Chem, 1988, 24: 105-131

[80]

Sun X, Kop LFM, Lau MCY, Frank J, Jayakumar A, Lucker S, Ward BB. Uncultured Nitrospina-like species are major nitrite oxidizing bacteria in oxygen minimum zones. ISME J, 2019, 13: 2391-2402

[81]

Sun K, Yu M, Zhu X-Y, Xue C-X, Zhang Y, Chen X, Yao P, Chen L, Fu L, Yang Z, Zhang X-H. Microbial communities related to the sulfur cycle in Sansha Yongle Blue Hole. Microbiol Spectr, 2023, 11 e01149–01123

[82]

Suter EA, Pachiadaki MG, Montes E, Edgcomb VP, Scranton MI, Taylor CD, Taylor GT. Diverse nitrogen cycling pathways across a marine oxygen gradient indicate nitrogen loss coupled to chemoautotrophic activity. Environ Microbiol, 2021, 23: 2747-2764

[83]

Tada Y, Marumoto K, Takeuchi A, Gralnick JA. Nitrospina-like bacteria are dominant potential mercury methylators in both the Oyashio and Kuroshio regions of the Western North Pacific. Microbiol Spectr, 2021, 9 e00833–00821

[84]

Tisserand D, Guédron S, Viollier E, Jézéquel D, Rigaud S, Campillo S, Sarret G, Charlet L, Cossa D. Mercury, organic matter, iron, and sulfur co-cycling in a ferruginous meromictic lake. Appl Geochem, 2022, 146 105463

[85]

Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome, 2018, 6: 158

[86]

Villar E, Cabrol L, Heimburger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. Environ Microbiol Rep, 2020, 12: 277-287

[87]

Wang Y, Yin D, Xiang Y, Xu Q, Zhang C, Xie Q, Wang D. A review of studies on the biogeochemical behaviors of mercury in the Three Gorges Reservoir, China. Bull Environ Contam Toxicol, 2019, 102: 686-694

[88]

Wang K, Liu G, Cai Y. Possible pathways for mercury methylation in oxic marine waters. Crit Rev Environ Sci Technol, 2021, 52: 1-19

[89]

Wang J, Dai J, Chen G, Jiang F. Role of sulfur biogeochemical cycle in mercury methylation in estuarine sediments: a review. J Hazard Mater, 2022, 423 126964

[90]

Wang Y-L, Ikuma K, Brown AMV, Deonarine A. Global survey of hgcA-carrying genomes in marine and freshwater sediments: insights into mercury methylation processes. Environ Pollut, 2024, 352 124117

[91]

Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. Maxbin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome, 2014, 2: 26

[92]

Xie L, Wang B, Pu X, Xin M, He P, Li C, Wei Q, Zhang X, Li T. Hydrochemical properties and chemocline of the Sansha Yongle Blue Hole in the South China Sea. Sci Total Environ, 2019, 649: 1281-1292

[93]

Yao P, Wang XC, Bianchi TS, Yang ZS, Fu L, Zhang X-H, Chen L, Zhao B, Morrison ES, Shields MR, Liu YN, Bi NS, Qi YZ, Zhou S, Liu JW, Zhang HH, Zhu CJ, Yu ZG. Carbon cycling in the world's deepest blue hole. J Geophys Res Biogeosci, 2020, 125 e2019JG005307

[94]

Zhang Y, Xu H, Wang L, Liu R, Fu L, Lin K. Unique bacterial communities and potential function along the vertical gradient in the deepest marine blue hole. Environ Microbiol Rep, 2021, 13: 911-927

[95]

Zhao L, Chen H, Lu X, Lin H, Christensen GA, Pierce EM, Gu B. Contrasting effects of dissolved organic matter on mercury methylation by Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. Environ Sci Technol, 2017, 51: 10468-10475

[96]

Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol, 1996, 62: 316-322

[97]

Zou D, Zhang C, Liu Y, Li M. Biogeographical distribution and community assembly of Myxococcota in mangrove sediments. Environ Microbiome, 2024, 19 47

RIGHTS & PERMISSIONS

The Author(s)

PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

/